• Title/Summary/Keyword: dynamic effect

Search Result 5,629, Processing Time 0.031 seconds

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation (차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증)

  • 배상우;윤중락;이장무;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

A Study on CAE Integrated Design of Gantry Crane (갠트리 크레인의 CAE 통합설계에 관한연구)

  • 박경택;김두형;박찬훈;한동훈;홍성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.720-725
    • /
    • 1997
  • This paper is to study the wind effect of the large scale gantry crane. It is used to control the sway of gantry crane in the loadingiunloading job of containers. I'hls is very important in the automated container terminal because the sway of handling equipments in pard is caused by thc l~nexpected disturbance such as wind and dynamic inertia by deriving force. This study shows the process of the modelling simulation of the wind effect of the sway motion of the gantry crane. Pro-Engineer, ANSYS and DAD'; ~ rr . used for 3D solid modelling and dynamic simulation. Though this study did not use the real parameters. the ; cwl ~ shows the trend of the wind effect is very large in the large scale crane and should be considered in design of the large scale gantry crane. In future, if the study is done by using the real parameters, the result is much more ~ise!'ul for dynamic control and design of gantry crane.

  • PDF

TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • A steel high-rise building (HRB) with 15 stories was analyzed under the dynamic load of wind or four different earthquakes taking into consideration the effect of soil-structure interaction (SSI) and using tuned mass damper (TMD) devices to resist these types of dynamic loads. The behavior of the steel HRB as a lightweight structure subjected to dynamic loads is critical especially for wind load with effect maximum at the top of the building and reduced until the base of the building, while on the contrary for seismic load with effect maximum at the base and reduced until the top of the building. The TMDs as a successful passive resistance method against the effect of wind or earthquakes is used to mitigate their effects on the steel high-rise building. Lateral displacements, top accelerations and straining actions were computed to judge the effectiveness of the TMDs on the response of the steel HRB subjected to wind or earthquakes.

Hygrothermal effects on dynamic instability of a laminated plate under an arbitrary pulsating load

  • Wang, Hai;Chen, Chun-Sheng;Fung, Chin-Ping
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.103-124
    • /
    • 2013
  • This paper studies the static and dynamic characteristics of composite plates subjected to an arbitrary periodic load in hygrothermal environments. The material properties of composite plates are depended on the temperature and moisture. The governing equations of motion of Mathieu-type are established by using the Galerkin method with reduced eigenfunction transforms. A periodic load is taken to be a combination of axial pulsating load and bending stress in the example problem. The regions of dynamic instability of laminated composite plates are determined by solving the eigenvalue problems based on Bolotin's method. The effects of temperature rise and moisture concentration on the dynamic instability of laminated composite plates are investigated and discussed. The influences of various parameters on the instability region and dynamic instability index are also investigated. The numerical results reveal that the influences of hygrothermal effect on the dynamic instability of laminated plates are significant.

Dynamic analysis of trusses including the effect of local modes

  • Levy, Eldad;Eisenberger, Moshe
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.81-94
    • /
    • 1999
  • The dynamic analysis of trusses using the finite element method tends to overlook the effect of local member dynamic behavior on the overall response of the complete structure. This is due to the fact that the lateral inertias of the members are omitted from the global inertia terms in the structure mass matrix. In this paper a condensed dynamic stiffness matrix is formulated and used to calculate the exact dynamic properties of trusses without the need to increase the model size. In the examples the limitations of current solutions are presented together with the exact results obtained from the proposed method.

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.

Characteristics of Dynamic Shear Modulus Mastercurve of Aged or Unaged Asphalt Binders (동전단 마스터곡선을 이용한 아스팔트 바인더의 노화 특성 평가)

  • Yun, Tae Young;Ham, Sang Min;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.87-94
    • /
    • 2013
  • PURPOSES: To characterize the aging effect on asphalt binder, dynamic shear modulus mastercurve of two typical asphalt binders are developed. METHODS: To develop dynamic shear modulus mastercurve, dynamic shear modulus at high temperature and creep stiffness at low temperature are measured by temperature sweep test and bending beam rheometer test, respectively. RESULTS: It is observed that the aging effect on asphalt binder can be clearly observed from dynamic shear modulus mastercurve and the mastercurve can be utilized to predict behavior of asphalt binder at wide range of temperature. CONCLUSIONS: It is confirmed that SBS 5% modified binder has more desirable mechanical property at low and high temperature as a pavement material comparing to PG64-22 binder and the mastercurve is an effective tool to evaluate the property of asphalt binder.

Singularity-Free Dynamic Modeling Including Wheel Dynamics for an Omni-Directional Mobile Robot with Three Caster Wheels

  • Chung, Jae-Heon;Yi, Byung-Ju;Kim, Whee-Kuk;Han, Seog-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.86-100
    • /
    • 2008
  • Most of the previously employed dynamic modeling approaches, including Natural Orthogonal Complement Algorithm, have limitations on their application to the mobile robot, specifically at singular configurations. Also, in their dynamic modeling of mobile robots, wheel dynamics is usually ignored assuming that its dynamic effect is negligibly small. As a remedy for this, a singularity-free operational space dynamic modeling approach based on Lagrange's form of the D' Alembert principle is proposed, and the singularity-free characteristic of the proposed dynamic modeling is discussed in the process of analytical derivation of the proposed dynamic model. Then an accurate dynamic model taking into account the wheel dynamics of the omni-directional mobile robot is derived, and through simulation it is manifested that the effect of the wheel dynamics on the whole dynamic model of the mobile robot may not be negligible, but rather in some cases it is significantly large, possibly affecting the operational performances of dynamic model-based control algorithms. Lastly, the importance of its accurate dynamic model is further illustrated through impulse analysis and its simulation for the mobile robot.

The Effect of Entrepreneurial Orientation, Learning Orientation and Dynamic Capability on International Performance: Moderating Effects of Slack Resource (중소기업의 기업가지향성, 학습지향성이 동적역량과 국제화 성과에 미치는 영향에 관한 연구: 여유자원의 조절효과를 중심으로)

  • Dong-Woo Ryu;Ki-Keun Kim
    • Korea Trade Review
    • /
    • v.45 no.5
    • /
    • pp.161-179
    • /
    • 2020
  • The importance of entering the international market for small and medium-sized enterprises (SMEs) has been continuously emphasized. As a way to overcome these factors, prior studies have increased interest in dynamic capability. The purpose of this study is to investigate the effects of entrepreneurial orientation, learning orientation, and dynamic capability on their international performance of SMEs. Drawing on an extensive review of the literature on dynamic capability view and internationalization, hypotheses are developed and tested using a sample of 214 SMEs in South Korea. Structural equation modeling was applied. As a result of analysis, first, dynamic capability has a significant effect on international performance. Second, entrepreneurial orientation has significant influence on dynamic capability. Third, learning orientation has significant influence on dynamic capability. Lastly, slack resource was found to moderate the relationship between dynamic capability and international performance. The results indicate that their entrepreneurial orientation and learning orientation ware driver of their dynamic capability. and that their dynamic capability was significant driver of their international performance. In the final conclusion, implications and limitations of research and suggestions for future research are discussed.