• Title/Summary/Keyword: dynamic control

Search Result 7,933, Processing Time 0.029 seconds

Dynamic Speed Control of a Unicycle Robot (외바퀴 로봇의 동적 속도 제어)

  • Han, In-Woo;Hwang, Jong-Myung;Han, Seong-Ik;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and Future Directions

  • Lee, Jong-Min;Lee, Jay H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.263-278
    • /
    • 2004
  • This paper reviews dynamic programming (DP), surveys approximate solution methods for it, and considers their applicability to process control problems. Reinforcement Learning (RL) and Neuro-Dynamic Programming (NDP), which can be viewed as approximate DP techniques, are already established techniques for solving difficult multi-stage decision problems in the fields of operations research, computer science, and robotics. Owing to the significant disparity of problem formulations and objective, however, the algorithms and techniques available from these fields are not directly applicable to process control problems, and reformulations based on accurate understanding of these techniques are needed. We categorize the currently available approximate solution techniques fur dynamic programming and identify those most suitable for process control problems. Several open issues are also identified and discussed.

Numerical Study of Flow Control of Dynamic Stall Using Continuous Blowing/Suction (정적 Blowing/Suction을 이용한 동실속 유동 제어에 관한 수치적 연구)

  • Choi S. Y.;Kwon O. J.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-119
    • /
    • 2004
  • The effect of a continuous blowing or suction on an oscillating 2-D NACA0012 airfoil was investigated numerically for the dynamic stall control. The influence of control parameter variation was also studied in the view point of aerodynamic characteristics. The result showed that the blowing control kept a higher lift drag ratio before stall angle but the dynamic stall angle was not exceed to without control result. As the slot position was closer to leading edge, the positive control effect becomes greater. The stronger jet and the smaller jet angel made more favorable roles on the control performance. In the cases of the suction, the overall control features were similar to those of the blowing, but dynamic stall angle was increased, i.e. suction was more effective to control dynamic stall. It was also founded that the suction control was showed better control effect as the slot position moves to trail edge within thirty percentage of chord length. In the simulation for the jet strength and the jet angle control, the same tendencies were observed to those of blowing cases.

  • PDF

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

Implementation of virtual plant using module concept for the dynamic simulation of drum type boiler (드럼형 보일러의 동특성 해석을 위한 모듈 개념의 가상 플랜트 구현)

  • 남채호;권상혁;노태정;이광식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.476-479
    • /
    • 1997
  • The focus of this paper is to implement of virtual plant using module concept for the dynamic simulation of drum type boiler and to simulate the control trends of dynamic characteristics. MAtlab & Simulink is used for implement virtual plant & analyzation the dynamics & control trends. They are available for analyzing the dynamic characteristics of drum type Boiler by means of applying well measured data to virtual plant.

  • PDF

Controlling Spillway Gates of Dams Using Dynamic Fuzzy Control

  • Woo, Young-Woon;Han, Soo-Whan;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.337-342
    • /
    • 2008
  • Controlling spillway gates of dams is a complex, nonlinear, non-stationary control process and is significantly affected by hydrological conditions which are not predictable beforehand. In this paper, control methods based on dynamic fuzzy control are proposed for the operation of spillway gates of dams during floods. The proposed methods are not only suitable for controlling spillway gates but also able to maintain target water level in order to prepare a draught. In the proposed methods, we use dynamic fuzzy control that the membership functions can be varied by changing environment conditions for keeping up the target water level, instead of conventional static fuzzy control. Simulation results demonstrate that the proposed methods based on dynamic fuzzy control produce an accurate and efficient solution for both of controlling spillway gates and maintaining target water level defined beforehand.

The design of variable structure controller for the systems having the first order dynamic (일차 dynamic을 갖는 계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경;강윤관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.179-184
    • /
    • 1991
  • This paper will describe the application for variable structure control theory to the first order dynamic system and verify it's robustness. The study on the first order dynamic system control which has been essential part for the control of servo motor (AC, DC) systems has been excluded in the study of variable structure control system(VSCS) because this first order system was not applicable to the previous variable structure control theory. So, for the robustness control of first order dynamic system with variable structure control theory, we propose modified switching function synthesis which guarantees the advantages of conventional VSCS and removes reaching phase which regards as shortcomings in VSCS. And we demonstrate the practical potential of implementation about this theory by simulation results of AC motor variable speed control.

  • PDF

Intelligent Control of Industrial Robot Using Neural Network with Dynamic Neuron (동적 뉴런을 갖는 신경회로망을 이용한 산업용 로봇의 지능제어)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.133-137
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have bevome increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking arre indispensable capabilities for their versatile application. the need to meet demanding control requirement in increasingly complex dynamical control systems under sygnificant uncertainties leads toward design of implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme the ntworks intrduced are neural nets with dynamic neurouns whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure fast in computation and suitable for implementation of real-time control, Performance of the neural controller is illustrated by simulation and experimental results for a SCAEA robot.

  • PDF

Effective Dynamic Models of a Cooling System for the Main Transformer in a Tilting Train (틸팅열차 주변압기 냉각시스템의 동적모델)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.22-29
    • /
    • 2008
  • In order to improve the efficiency of a main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include dynamic models of a main transformer, an oil pump, an oil cooler, a blower, and a pipe. Control algorithms for a blower and an oil pump were selected in order to identify the effectiveness of dynamic models. A simulation program was developed by using the developed dynamic models and the selected control algorithms. Simulation results showed good predictions of dynamic behaviors of a main transformer cooling system. Therefore, dynamic models, which were developed in this study, may be effectively used to develop control algorithms of a main transformer cooling system.

  • PDF

Analyses of the Cost function for the Reductions of the Dynamic Response and the Vibrational Intensity of a Discrete System and Its Elastic Supporting Beam (이산계와 탄성 지지보의 동응답 및 진동 인텐시티 저감을 위한 목적함수 해석)

  • Kim, Gi-Man;Choi, Seong-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2010
  • In this paper, the feasibility of the cost function having two control factors were discussed in compared to two others which has one different control factor respectively. As of the control factors, the dynamic response of a discrete system and the vibrational intensity at the reference point which is the connecting point of a discrete system to a flexible beam were controlled actively by the control force obtained from the minimization of the cost function. The method of feedforward control was employed for the control strategy. The reduction levels of the dynamic response of a discrete system and the vibrational intensity at a reference point, and also the input power induced by the control force were evaluated numerically in cases of the three different cost functions. In comparison with the results obtained from the cost functions of one control factor, which is the dynamic response or the vibrational intensity, in most cases of the cost function of two control factors the better or similar results were obtained. As a conclusion, it is surely noted that both the dynamic response and the vibrational intensity of the vibrating system be controlled up to the expected level by using the single cost function having two control factors.