• 제목/요약/키워드: dynamic Monte Carlo

검색결과 219건 처리시간 0.031초

다물체계의 평형위치에서 고유진동수에 대한 공차해석 (Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State)

  • 엄승만;최동환;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.65-71
    • /
    • 2007
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the dynamical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.

국내 5GHz대역 초고속 무선 접속망의 공유조건 연구 (A study on Conditions of Frequency Coordination for High Speed Radio Access Network in domestic 5GHz Band)

  • 박진아;박승근;박덕규;오용선
    • 한국정보통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.751-758
    • /
    • 2000
  • 본 논문은 국내 5GHz 대역에서 초고속 무선접속 망을 도입하기 위한 주파수의 분배 및 공유조건에 관한 것이다. 본 논문에서는 초고속 무선접속 망과 기존 기상 레이더 사이의 공유 가능성을 평가 하기 위해서 최소결합손실(Minimum Coupling Loss) 방법과 Monte-Carlo 시뮬레이션을 이용하여 기상 레이더가 초고속 무선 접속용 기기에 미치는 전파간섭을 분석하였다. 그리고 시뮬레이션과 실제 측정 결과에 의하면 기상 레이더와 초고속 무선접속 망의 주파수 공유를 위해서는 DFS(Dynamic Frequency Selection)기법을 사용하는 것이 필수적이라는 결론을 얻었다.

  • PDF

정적 및 동적 응답을 이용한 교량의 손상도 추정 기법 (Damage Identification Technique for Bridges Using Static and Dynamic Response)

  • 박우진
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.119-126
    • /
    • 2005
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. From a standpoint of both safety and performance, it is desirable to monitor the occurrence, location, and extent of such damage. Structures require complicated element models with a number of degrees of freedom in structural analysis. During experiment much effort and cost is needed for measuring structural parameters. The sparseness and errors of measured data have to be considered during the parameter estimation Of Structures. In this paper we introduces damage identification algorithm by a system identification(S.I) using static and dynamic response. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation and a data measured perturbation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a truss bridge. The assessment results by each method were compared and we could observe that the 5.1 method is superior to the other conventional methods.

복합전력계통 신뢰도평가의 확률론적 안전도 도입 (The Implementation of Probabilistic Security Analysis in Composite Power System Reliability)

  • 차준민;권세혁;김형철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권5호
    • /
    • pp.185-190
    • /
    • 2006
  • The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.

The accuracy of fragility curves of the steel moment-resisting frames and SDOF systems

  • Yaghmaei-Sabegh, Saman;Jafari, Ali;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.243-259
    • /
    • 2021
  • In the present paper, a Monte Carlo-based framework is developed to investigate the accuracy and reliability of analytical fragility curves of steel moment-resisting frames and simple SDOF systems. It is also studied how the effectiveness of incremental dynamic analysis (IDA) and multiple stripes analysis (MSA) approaches, as two common nonlinear dynamic analysis methods, are influenced by the number of records and analysis stripes in fragility curves producing. Results showed that the simple SDOF systems do not provide accurate and reliable fragility curves compared with realistic steel moment-resisting structures. It is demonstrated that, the effectiveness of nonlinear dynamic analysis approaches is dependent on the fundamental period of structures, where in short-period structures, IDA is found to be more effective approach compared with MSA. This difference between the effectiveness of two analysis approaches decreases as the fundamental period of structures become longer. Using of 2 or 3 analysis stripes in MSA approach leads to significant inaccuracy and unreliability in the estimated fragility curves. Additionally, 15 number of ground motion records is recommended as a threshold of significant unreliability in estimated fragility curves, constructed by MSA.

탐색 레이다에서 누적확률에 기인한 탐지거리 계산에 관한 연구 (Calculation of the Detection Range for a Given Cumulative Probability in Airborne Surveillance Radars)

  • 김은희;노지은
    • 한국전자파학회논문지
    • /
    • 제29권1호
    • /
    • pp.24-27
    • /
    • 2018
  • 항공기용 레이다의 성능을 나타내는 최대 탐지 거리는 누적 탐지 확률로 규정된다. 이는 지상클러터에 의해 단일 탐지 확률이 거리에 따라 오르내리기 때문에 단일 탐지 확률로 탐지거리를 규정하기 어렵기 때문이다. 따라서 단조 증가하는 누적 탐지 확률을 이용하여 규정한다. 본 논문에서는 일정한 주기를 가지는 탐색 레이다에서 탐색 빔의 위치와 표적의 거리를 고려한 평균 누적 탐지 확률 계산법을 제시하며, 몬테카를로 시뮬레이션의 결과와 비교하여 동일함을 보였다. 수치적 계산에 의해 검증된 몬테카를로 시뮬레이션 모델은 추후 다양한 시나리오에 대한 시스템의 성능을 평가하는 데에 사용될 수 있을 것이다.

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.

Perturbation Based Stochastic Finite Element Analysis of the Structural Systems with Composite Sections under Earthquake Forces

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.129-144
    • /
    • 2008
  • This paper demonstrates an application of the perturbation based stochastic finite element method (SFEM) for predicting the performance of structural systems made of composite sections with random material properties. The composite member consists of materials in contact each of which can surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide probabilistic behavior of a structure, only the first two moments of random variables need to be known, and should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic finite element dynamic analysis formulation of structural systems made of composite sections is given. Two numerical examples are presented to illustrate the method. During stochastic analysis, displacements and sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing elastic modulus as random variable. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.

몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가 (Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation)

  • 이동연;강영록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권2호
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

교량 충격하중의 확률론적 모델 (Reliability-Based Dynamic Load Model for Bridges)

  • 황의승
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 1991
  • The purpose of this study is to develop the reliability-based dynamic load model for bridges. Analytial procedure to calculate the dynamic load is developed. Truck traffic is simulated using Monte Carlo method. Static and dynamic loads(deflections) are plotted on the normal probability paper to estimate the mean maximum dynamic load in bridge lifetime. The results may be served as a basis for new LRFD bridge design code.

  • PDF