• Title/Summary/Keyword: dyers

Search Result 2,715, Processing Time 0.026 seconds

The Mechanical Properties of Fluffy Spun-like Yarn by ATY Textured (1) (ATY 사가공에 의한 Fluffy Spun-like Yarn의 물성 (1))

  • Park, Myung Soo
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.223-231
    • /
    • 2013
  • This research has a main focus on providing fundamental data for on-the-spot industrial fields by comparing and contrasting physical properties of fluffy spun-like material. The fluffy spun-like yarn is developed as fluffy yarn similar to natural spun-like yarn by treating polyester(FDY and + type shaped DTY) with ATY machine. In this experiment, using ATY machine for raw material texturing, we produced two fluffy yarns: (i) + type shaped(50d/36f, DTY) as core yarn and 100d/192f FDY as effect yarn[ATY(D)], (ii) FDY(75/36) as core yarn and 100d/192f FDY [ATY(F)] as effect yarn. After producing thous yarns, we twisted them with 500T/M, 700T/M, 1000T/M, respectively. produced yarns through this process were used as the samples for this experiment. Even though the shrinkage of fluffy yarn ATY(F) and ATY(D) becomes high as treated temperature rises and treated time lengthens, it is more affected by treated temperature then by treated time. In this experiment, produced fluffy yarn[ATY(D)] shows a little high values for temperature, but almost same values for higher temperatures. When we compare ATY(F) with ATY(D) fluffy yarn shows more natural fluffy yarn surface structure like natural cotton. The shrinkage of 700T/M twisted ATY(D) fluffy yarn show about 11% under treated temperature $180^{\circ}C$ and treated time 30min, and about 7% under $120^{\circ}C$ and 30min, respectively. But the shrinkage of 1000T/M fluffy yarn shoes about 9% and 6% under same conditions. Regarding treated time, tenacity and initial modulus of ATY(D) fluffy yarn rise high until 30min, but do not show much increase above 30min. Regarding treated temperature, tenacity and initial modulus of it rise high aboyer $140^{\circ}C$.

A Study on the Characteristic of Contact Pressure for CPB (Cold Pad Batch) Padder Roll Controlled by Hydraulic Single Cell (단일 유압 Cell로 제어되는 CPB(Cold Pad Batch)용 패더롤의 접촉압력 특성 연구)

  • Cho, Kyung-Chul;Lee, Eun-Ha;Jo, Soon-Ok;Park, Si-Woo;Hwang, Youn-Sung;Kim, Soo-Youn
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.86-96
    • /
    • 2017
  • To make uniform pressure distributed over the contact surface was necessary to cold pad batch dyeing machine. In this study, to confirm characteristic of flexibility and the contact pressure distribution through experimental analysis of padder roll were controlled by hydraulic cell. When there were no load pressure only inner pressure, the value of displacement in the center of padder were greater than the end of the padder. The results of this study showed that the padder had the optimum value of inner pressure for uniform contact pressure distribution. Measuring the contact pressure in a padder system were driven by using a pre-scale film. Uniform contact pressure distribution of cell padder were a linearly with load pressure and inner pressure. When the load pressure was less than 8 tons, the inner pressure for the uniform contact pressure was 1~4 bar. The padder roll performance curves proposed in this study were available for practical production environments and various roll designs.

Study on the Mechanical Properties of Polyketone Fiber according to Dyeing and Finishing Process (폴리케톤 섬유의 염색 및 후가공 처리에 따른 기계적 물성에 관한 연구)

  • Kim, Sang Yong;Kim, Kyung Min;Lee, Won;Lee, Deuk Jin;Whang, Sun Dong;Yang, Sung Yong
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Polyketone fiber, a newly developed high strength fiber, has a tenacity and modulus similar to the p-aramid fiber, and can be used for reinforcing mechanical rubber goods(MRG), such as tires, hoses, and technical textiles. It will be expected for replacement of super fiber such as aramids and increasing the technical textile market share. This paper surveys the mechanical properties of polyketone fiber for technical textiles. For this purpose, dyed polyketone fabric is prepared, mechanical properties of coated and uncoated polyketone fabrics such as tensile strength, elongation and tear strength were examined before and after weather resistance test(temperature $63{\pm}3^{\circ}C$, humidity 60%, amount of power $0.35w/m^2$). The differences of mechanical properties between uncoated and coated fabrics for high functional technical textiles and composite materials are estimated through this study. The UV-stability of polyketone fabric showed obvious improvement after coating. After 168h(7day) of UV exposure, the coated fabric showed less deterioration in mechanical properties with the retained tensile strength and elongation at break greater than 22 and 17% of the uncoated polyketone fabrics values, respectively.

Effect of Silane Coupling Agent on the Interfacial Adhesion and Mechanical Properties of Polyketone Fiber Reinforced Epoxy Composites (실란커플링제 처리가 폴리케톤섬유/에폭시 복합재료의 계면접착성 및 물성에 미치는 영향)

  • Jo, Hani;Yang, Jee-Woo;Lim, Hyeon Soo;Oh, Woo Jin;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • The interfacial adhesion between fiber and matrix affects the physical properties of fiber reinforced composites. In this study, 3-(Methacryloyloxy)propyltrimethoxy silane(MPS) coupling agent was used to increase the interfacial adhesion between polyketone fiber and epoxy resin. The change of surface chemical composition of polyketone fiber treated with MPS was analyzed using a FTIR-ATR. The interfacial bonding between fiber and resin increased with silane coupling agent largely. Consequently, interfacial shear strength(IFSS) was enhanced with increasing concentration of MPS coupling agent and thus, the physical properties of the composites such as flexural properties and dynamic mechanical properties were changed. Flexural strength and modulus increased when the MPS concentration was higher than 0.5wt%. The dynamic storage modulus of Polyketone/Epoxy composites treated with MPS was higher than that of the untreated one. When the MPS concentration of 3wt%, the highest storage modulus was obtained.

Ecofriendly Antimicrobial Hair Coloration Using Sargassum fusiforme Extract (톳 추출액을 이용한 친환경 항균성 모발 염색)

  • Park, Seong-Jin;Kim, Kang-In;Ko, Ji-Min;Kim, A-Hyun;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • To overcome the harmful effects caused by conventional oxidative hair dyes, natural colorants becomes more popular in the hair dyeing. By extracting Sagassum fusiforme powders with aqueous alkaline solution as a solvent at 130℃ for 60 minutes, a fucoxanthin concentration of up to 216㎍/ml can be obtained. UV/Vis analysis was used to prove the presence of fucoxanthin in the extract powder. A K/S value of 23.8 can be obtained when wool fabrics were dyed with the extract at 120℃ for 60 minutes under pH 2. The color fastness properties of the dyed wool fabrics were very good as indicated by rating 4 for laundering(color change), rating 3 or higher for rubbing, and rating 5 for light irradiation. The dyed wool fabric was found to have antimicrobial activity against Staphylococcus aureus. The antioxidant and antimicrobial activity of the Sagassum fusiforme extract can be an effective functional hair colorant. Hair dyeing with the extract formulation at 45℃ for 40 minutes under pH 5 accomplished a K/S value of 8.9. The color fastness of the dyed hair showed rating 3 against light irradiation, which increased to rating 5 with after-mordanting of tannin acid.

Manufacturing and Characterization of PVDF/TiO2 Composite Nano Web with Improved β-phase (β-phase가 향상된 PVDF/TiO2 Nano Web 제조 및 특성 분석)

  • Bae, Sung Jun;Kim, Il Jin;Lee, Jae Yeon;Sur, Suk-Hun;Choi, Pil Jun;Sim, Jae Hak;Lee, Seung Geol;Ko, Jae Wang
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.167-175
    • /
    • 2020
  • In this study, the optimum conditions for manufacturing PVDF nano web according to various electrospinning conditions such as solution concentration and applied voltage conditions were confirmed. The optimum spinning conditions were studied by analyzing the changes in the radioactivity of PVDF/TiO2 nano web according to the TiO2 content and the content of β-phase closely related to the piezoelectric properties under established conditions. As a result, it was confirmed that the concentration of the spinning solution was 20 wt%, the applied voltage was 25 kV, and the TiO2 content was 5 phr. PVDF nano web and PVDF/TiO2 nano web were observed morphologies through Scanning Electron Microscope(SEM) analysis. Formation of β-phase by electrospinning was confirmed by Fourier transform infrared spectroscopy(FT-IR) and X-ray Diffractometer(XRD), and the effect of the trapped nano web structure on the piezoelectric properties was investigated.

Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics (고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.

Changes on Physical Properties of Chrome Leather by Treatment with Artificial Perspiration (크롬유혁의 인공땀액 처리에 의한 물성변화)

  • Yoon, Jeong Ah;Choi, Suk Chul;Lee, Yang Hun;Chun, Tae Il
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.25-32
    • /
    • 1995
  • This study was carried out to examine the influences of fatigue and perspiration on the deterioration of chrome leather for shoes. The samples were treated with acidic and alkaline artificial perspirations and applied cyclic tensile stress, and the elastic recovery from fatigue strain, tensile strength and elongation, stiffness etc. by regions and directions were determined. The physical properties generally indicate considerable difference by regions and directions due to the thickness, entangling state, and arrangement direction of fiber buldles within the leather. By the treatment of artificial perspirations, the length, weight, strength, elastic recovery from fatigue of the lether are decreased and the thicknes, elongation, and stiffness are increased; and their extents by the alkaline perspiration are higher than those by the acidic one. The elastic recovery from fatigue of samples are decreased with increasing fatigue cylcle; and indicate regressive relations against the logarithm of the elapsed time, and the means of regression coefficients are 2.73 > 2.55 > 2.22 for samples treated by the acidic perspiration, untreated, and treated by the alkaline perspiration, respectively. The tensile strength is decreased and elogation is increased by fatigue, but the changes are diminished likely due to a rearrangment of fiber bundles with increasing fatigue cycle. And the samples become a little flexible immediately after fatigue; but stiffen again with elastic recovery from fatigue strain, consequently for some cases their stiffness after recovery are rather greater than those before fatigre.

  • PDF

The Effect of Natural Mordants on the Silk Fabrics Dyed with Green Tea Extracts(I) - Analysis of Natural Mordants and the Effect on Color Changes - (녹차 추출액 염색 견포의 천연 매염제 처리 효과(I)-천연 매염제 분석 및 색상 변화를 중심으로-)

  • 최석철;정진순;천태일
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.15-22
    • /
    • 1999
  • This study investigated the mordanting effect of natural mordants such as camellia ash, bean chaff ash and pyrolignite of iron(Iron(II) Acetate) on silk fabrics dyed with green tea extracts. Experimental variables include the conditions of extraction and dyeing, and types of natural mordants. Inorganic ion contents In natural mordants were analysed by Induced Coupled Plasma Atomic Emission Spectrometer. In the ash Al, Fe, Si and Mn were in % unit, Cr and Ni were detected in ppm unit, and in the aqueous extracts of the ash all the metal ions were in ppm unit. On the other hand, fairly high content of Al(2.13% ) in camellia ash extract and Fe(7.91% ) in the aqueous extracts of pyrolignite iron were detected. The absorbance intensity of green tea extracts in UV-Visible spectrum increased with the temperature and time of extraction. The maximum absorption wavelength of the extracts appeared at 272.5nm and 210.5nm. The US values of silk fabrics dyed with green tea extracts were increased with temperature and time of dyeing. Surface color of silk fabric dyed with green tea extracts was 9.1YR, but it was changed from 7.9YR to 7.5YR by camellia ash extract and 7.4YR to 6.4YR by bean chaff ash extract with increase in mordant concentration. Pre-mordanted and post-mordanted fabrics with pyrolignite of iron were changed from 1.4YR to 1.1R and 7.2P to 4.2P, respectively.

  • PDF

The Characteristics of Exhumed Cotton Fabrics of the Middle Age of Yi Dynasty (朝鮮中期 出土된 綿織物의 理化學的 特性)

  • Lee, Jeong Sook;Kim, Sung Reon
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.8-15
    • /
    • 1996
  • Three pieces of cotton fabrics used for this study were exhumed in the Mt.Moo Deung near Kwang Ju in 1965. The fabrics were remains of Jang Heung Lim Si-the nephew's wife of General Kim Deok Ryeong. It was reported that Jang Heung Lim Si died in 1615. The cotton fabrics were classified into three, A, B and C, according to their color. The fabric A was inherent color of cotton, the fabric B was that of light brown and the fabric C was that of dark brown. The physical and chemical characteristics of the cotton fabrics were examined. In the meantime the construction of cotton fabrics and traditional dyeing of Yi dynasty were studied through various records. The results were as follows: 1. According to electromicroscopic examination, the lumen in the cotton fiber had not been developed enough, therefore the quality of cotton at that time was supposed to be not so excellent. 2. The results of chemical analysis indicated that: (1) While the copper number of the cotton fabric A was similar to that of bleached cotton, that of the fabric C was extremely high. (2) The amount of methylene blue absorption was much more than that of normal cotton. (3) The content of cellulose was less than that of normal cotton. (4) The degree of polymerization was less than that of normal cotton. From the results mentioned above, it was concluded that the cotton fabrics were oxidized slowly in the closed lime coffin for a long period of time. From this process of oxidization and deterioration, the degree of polymerization was decreased through depolymerization, and carboxyl groups were produced by the oxidization at reducing end groups. 3. It was confirmed that the cotton fabric C was dyed by the juice of immature persimmon. Thus, it was inferred that the large amount of copper number of cotton fabric C was derived from phenolic OH groups of tannins having high reducing properties in persimmon.

  • PDF