• Title/Summary/Keyword: durability damage

Search Result 533, Processing Time 0.026 seconds

OPTIMAL SHAPE DESIGN OF THE FRONT WHEEL LOWER CONTROL ARM CONSIDERING DYNAMIC EFFECTS

  • Kang, B.J.;Sin, H.C.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.309-317
    • /
    • 2007
  • In this study, we conducted a vibration fatigue analysis of the lower control arm in a vehicle suspension system. The vehicle was driven during the tests so that the dynamic effects could be taken into account. The dynamic load of the frequency domain was superimposed on the frequency response analysis. We performed a virtual proving ground test using multi-body dynamics, along with a finite element analysis and fatigue life predictions. Shape optimization was also considered using the design of the experimental approach, and a response surface analysis was performed to improve the durability performance of the lower control arm. We identified the elements that had the most influence on the optimal shape of the finite element model and analyzed the sensitivity of those elements. Then the optimal points that minimized the amount of damage to the areas of interest were determined through a response surface analysis. The results suggested that the fatigue life of the model increased as its mass was not increased excessively, and demonstrated that these design procedures yielded an appropriate optimized lower control arm model.

Influence of particle packing on fracture properties of concrete

  • He, Huan;Stroeven, Piet;Stroeven, Martijn;Sluys, Lambertus Johannes
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.677-692
    • /
    • 2011
  • Particle packing on meso-level has a significant influence on workability of fresh concrete and also on the mechanical and durability properties of the matured material. It was demonstrated earlier that shape exerts but a marginal influence on the elastic properties of concrete provided being packed to the same density, which is not necessarily the case with different types of aggregate. Hence, elastic properties of concrete can be treated as approximately structure-insensitive parameters. However, fracture behaviour can be expected structure-sensitive. This is supported by the present study based on discrete element method (DEM) simulated three-phase concrete, namely aggregate, matrix and interfacial transition zones (ITZs). Fracture properties are assessed with the aid of a finite element method (FEM) based on the damage materials model. Effects on tensile strength due to grain shape and packing density are investigated. Shape differences are shown to have only modest influence. Significant effects are exerted by packing density and physical-mechanical properties of the phases, whereby the ITZ takes up a major position.

A Study on the Lifetime Assessment of Bearings According to the Output Shaft Supporting Structures in Transmissions of a Tracked Vehicles (궤도차량 변속기 출력 축 지지구조에 따른 베어링 수명 영향 평가에 대한 연구)

  • Park, Jong-Won;Kim, Hyoung-Eui
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.331-342
    • /
    • 2011
  • The transmission of tracked vehicles performs complex functions as steering, shifting, braking, etc. and the system level life time has been a key influenced by the number of sub-parts like as gear assembly, torque converter, clutches, bearings and so on. In particular, the mechanical type steering system in tracked vehicle has impact shock torques in steering shift and those kind of shock torques can effect on the durability of many sub-parts in power train system. The field failure modes of gear assembly, steering assembly and the bearings of output shaft appear as a very complex phenomenon. In this study, the actual failure, which may occur in field, of the transmission was investigated comprehensively and that the endurance test on the resulting output shaft bearing failure analysis and life assessment was performed. Life time test method used in this study, developed for the purpose of the internal usage, and under these testing techniques the impact of the each bearing damage, which used in tracked vehicle transmission left / right outputs of different structures, was analyzed.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Two-dimensional water seepage monitoring in concrete structures using smart aggregates

  • Zou, Dujian;Li, Weijie;Liu, Tiejun;Teng, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2018
  • The presence of water inside concrete structures is an essential condition for the deterioration of the structures. The free water in the concrete pores and micro-cracks is the culprit for the durability related problems, such as alkali-aggregate reaction, carbonation, freeze-thaw damage, and corrosion of steel reinforcement. To ensure the integrity and safe operation of the concrete structures, it is very important to monitor water seepage inside the concrete. This paper presents the experimental investigation of water seepage monitoring in a concrete slab using piezoelectric-based smart aggregates. In the experimental setup, an $800mm{\times}800mm{\times}100mm$ concrete slab was fabricated with 15 SAs distributed inside the slab. The water seepage process was monitored through interrogating the SA pairs. In each SA pair, one SA was used as actuator to emit harmonic sine wave, and the other was used as sensor to receive the transmitted stress wave. The amplitudes of the received signals were able to indicate the water seepage process inside the concrete slab.

The ROP mechanism study in hard formation drilling using local impact method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Mei, Liu;Meng, Xiannan;Jiang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The low rate of penetration and short lifetime of drilling bit served as the most common problems encountered in hard formation drilling, thus leading to severe restriction of drilling efficiency in oil and gas reservoir. This study developed a new local impact drilling method to enhance hard formation drilling efficiency. The limitation length formulas of radial/lateral cracks under static indentation and dynamic impact are derived based on the experimental research of Marshall D.B considering the mud column pressure and confining pressure. The local impact rock breaking simulation model is conducted to investigate its ROP raising effect. The results demonstrate that the length of radial/lateral cracks will increase as the decrease of mud pressure and confining pressure, and the local impact can result in a damage zone round the impact crater which helps the rock cutting, thus leading to the ROP increase. The numerical results also demonstrate the advantages of local impact method for raising ROP and the vibration reduction of bit in hard formation drilling. This study has shown that the local impact method can help raising the ROP and vibration reduction of bit, and it may be applied in drilling engineering.

Single-Stage Quasi Resonant Type PSR(Primary Side Regulation) PWM Converter for the LED Drive in TRIAC Phase Controlled Dimmer (TRIAC위상 제어 조광기에서의 LED구동을 위한 Single-Stage 준 공진형 PSR(Primary Side Regulation) PWM 컨버터)

  • Han, Jae-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.84-94
    • /
    • 2013
  • In case when the existing TRIAC phase controlled dimmer is drove for the LED lighting equipments, there are many problems such as the LED flicker in low phase-angles, the acoustic noise and elements damage by increase of the peak voltage in the input filter capacitor, mulfunction by insufficiency of the TRIAC holding current, and the abnormal oscillation by LC resonant. In this paper, we proposes the single-stage quasi-resonant PSR(Primary Side Regulation) PWM converter, and the design, the simulation and experiment are performed. As a result, it could confirm that the proposed PWM converter is the lighting equipments for LED drive which can alternate the existing 60W class incandescent bulbs and it has the high drive performance of the efficiency 80% and over, the power factor 0.95 and over under the normal voltage 220V. Finally, total harmonic distortion(THD) is gratified with a standard[1] of the lighting equipments and the durability is evaluated as the high reliablilty of 150,000 hours and over.

Impact effect analysis for hangers of half-through arch bridge by vehicle-bridge coupling

  • Shao, Yuan;Sun, Zong-Guang;Chen, Yi-Fei;Li, Huan-Lan
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • Among the destruction instances of half-through arch bridges, the shorter hangers are more likely to be ruined. For a thorough investigation of the hanger system durability, we have studied vehicle impact effect on hangers with vehicle-bridge coupling method for a half-through concrete-filled-steel-tube arch bridge. A numerical method has been applied to simulate the variation of dynamic internal force (stress) in hangers under different vehicle speeds and road surface roughness. The characteristics and differences in impact effect among hangers with different length (position) are compared. The impact effect is further analyzed comprehensively based on the vehicle speed distribution model. Our results show that the dynamic internal force induced by moving vehicles inside the shorter hangers is significantly greater than that inside the longer ones. The largest difference of dynamic internal force among the hangers could be as high as 28%. Our results well explained a common phenomenon in several hanger damage accidents occurred in China. This work forms a basis for hanger system's fatigue analysis and service life evaluation. It also provides a reference to the design, management, maintenance, monitoring, and evaluation for this kind of bridge.

Quality Inspection for Cast-In-Place Concrete with the Device to Record Curing Temperature (양생온도 이력 기록장치를 이용한 현장타설 콘크리트의 품질검사)

  • Cho, Yeong-Kweon;Kim, Kwan-Ho;Kim, Meyong-Won;Lee, Jun-Gu;Yoo, Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.351-354
    • /
    • 2005
  • Quality of concrete required to achieve the desired levels of strength and durability depend on the effectiveness of the curing method. During cold weather, the concrete at the time of placement should be taken to prevent damage to concrete due to freezing. Since the cement-water reaction is exothermic by nature, the temperature within mass concrete can be quite high. The temperature control for massive sections should be taken more careful than for shallow sections. However, in the constructing hydraulic structures, the curing temperature control for concrete had been very difficult to be taken in a proper way because the conditions constructing them are poor and contractors are small enterprises. For several. reasons including above, Rural Research Institute has developed a device and program for recording curing temperature history in cold weather concrete and mass. As there are two major advantages of the device, namely cheapness and availability, this program and device has been recommended to the use of curing temperature control in cold weather concrete and mass.

  • PDF

Hysteretic Behavior of RC Beams Exposed to Freezing and Thawing under Cyclic Loadings (철근콘크리트보의 동결융해 경험에 따른 반복하중하에서의 이력특성)

  • Jang, Gwang-Soo;Kim, Yun-Su;Seo, Soo_Yeon;Choi, Ki-Bong;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.25-28
    • /
    • 2008
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freezing and thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the hysteretic behavior of RC beams exposed to freezing and thawing under cyclic loadings. To compare the difference in hysteretic behavior of RC Beams, limited tests were conducted under different types of damage and freezing and thawing cycles. For this purpose, six specimens were tested. It is thought that experimental results will be used as basic data to evaluate hysteretic behavior of RC beams exposed to freezing and thawing.

  • PDF