• Title/Summary/Keyword: ductile frame

Search Result 125, Processing Time 0.025 seconds

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

Influence of green roofs on the seismic response of frame structures

  • Bianchini, Fabricio;Haque, A.B.M. Rafiqul;Hewage, Kasun;Alam, M. Shahria
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.265-280
    • /
    • 2016
  • Environmental and operational benefits of green roofs are manifolds; however, their main disadvantages are cost and weight. New technology enabled the use of plastics to reduce the weight of green roof systems to promote their installation. To maximize their potential benefits, green roofs can be installed on existing structures. This study evaluates the influence of green roofs on the seismic response of 3, 6, and 8 storey reinforced concrete ductile moment resisting frames, which were designed according to current seismic standards, however, not designed for green roofs. For each frame, three different types of roofs are considered: gravel flat roof, extensive green roof, and intensive green roof. Nonlinear dynamic time history analysis using an ensemble of twenty real earthquake records was performed to determine the inter-storey drift demand and roof drift demand for each frame. Eigenvalue analysis was also performed to determine the impact of green roofs weight on the elastic and cracked periods of the structure. Results from the analysis demonstrated that intensive and extensive green roofs do not affect the seismic performance of reinforced concrete frame structures.

Seismic Performance Evaluation of Unreinforced Masonry Walls with Additional Boundary RC Frames (RC 경계골조를 설치한 신축 비보강 조적벽체의 내진성능 평가)

  • You, Young-Chan;Kim, Min-Sun;Lee, Hyun-Jee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.27-35
    • /
    • 2018
  • The purpose of this study is to examine the effects of boundary RC frame(composed of one tie-beam and two tie-columns) on seismic performance of unreinforced masonry walls to suggest alternative way for seismic design of unreinforced masonry wall structures. Two test specimens are prepared, one is a typical unreinforced masonry wall and another is alternative unreinforced masonry wall with additional boundary RC frame. The structural experiments were carried out to evaluate the difference of seismic resistance performance between two test specimens with or without the boundary RC frames. From the test results, it was found that the failure mode of unreinforced masonry wall fundamentally changed from 'brittle' to 'ductile' by the installing of boundary RC frames. And, the maximum load and energy dissipation capacity of the test specimen with boundary RC frame was increased about 1.6~1.7 and 2~3 times respectively compared with a typical unreinforced masonry wall specimen.

Comparison of Seismic Performance of Steel Moment Frame according to Different Analytic Joint Models (국내 철골골조의 접합부모델에 따른 내진성능 비교)

  • 이준석;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.317-323
    • /
    • 2000
  • The purpose of this study is to compare the seismic resistant capacity inherent in ductile moment resisting frames using two different joint modeling. The difference between these two models is the capability for considering the panel zone deformation. For this purpose, 5 story steel moment frame is designed in compliance to the Korean seismic design provisions and the steel structure design standard. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) of this structure are carried out using two different joint models. Based on the results of NSP and NDP, the sensitivity of the response to analytical modeling is appraised. Also, it is proposed that for the highrise steel structures, the joint deformation should be accounted properly by the analytical model.

  • PDF

A Study on the Characteristics for the Blanking of Lead Frame with the nickel alloy Alloy42 (니켈합금 Alloy42를 사용하는 리드프레임의 블랭킹 특성에 관한 기초연구)

  • Bahn Gab-su;Suh Eui-kwon;Lee Gwang-ho;Mo Chang-ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.87-93
    • /
    • 2004
  • An experimental is carried out to investigate the characteristics of blanking for nickel alloy Alloy42 (t=0.203mm), a kind of IC lead frame material. By varying clearance between die and punch the shapes of shear profile are examined. Finite element analysis with element deletion algorithm for ductile fracture mode is also carried out to study the effect of clearance theoretically and to compare with experimental results. The rectangular shape specimen with four different comer radius is used to study the characteristics of blanking for straight side and comer region simultaneously. As the result the ratios measured k(m experiment of roll over, burnish and fracture zone based on initial blank thickness are compared with those of FE analysis. Both experiment and FE analysis show that the amount of mil over and fracture is increased as the clearance increases. When the radius of comer is less than thickness of blank it has been found that larger clearance is required than that of straight region in order to maintain same quality of shear profile at the comer region.

A Study on the Characteristics for the Blanking of Lead Frame with the Rectangular Shape Blanking (사각형 블랭킹을 통한 리드프레임의 블랭킹 특성에 관한 기초연구)

  • Lim, San-Heon;Suh, Eui-Kwon;Shim, Hyun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.182-188
    • /
    • 2001
  • An experiment is carried out to investigate the characteristics of blanking for copper alloy C194 (t=0.254mm), a kind of IC lead frame material. By varying clearance between die and punch, the shapes of shear profile are examined. Finite element analysis with element deletion algorithm for ductile fracture mode is also carried out to study the effect of clearance theoretically and to compare with experimental results. The rectangular shape specimen with four different corner radius is used to study the characteristics of blanking for straight side and corner region simultaneously. As the result, the ratios measured from the experiment of roll over, burnish, and fracture zone based on intial blank thickness are compared with those of FE analysis. Both experiment and FE analysis show that the amount of roll over and fracture is increased as the clearance increases. It has been found that larger clearance is required than that of straight region when the radius of corner is less than thickness of blank, in order to maintain same quality of shear profile at the corner region.

  • PDF

A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame (철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구)

  • Kim, Hyeon-Jin;Lee, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Case study on seismic retrofit and cost assessment for a school building

  • Miano, Andrea;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.