• Title/Summary/Keyword: duct system

Search Result 693, Processing Time 0.029 seconds

A Study on Multi-Block Technique by Bi-CGSTAB Solver (Bi-CGSTAB 해법에 의한 복합격자망 해석방법에 관한 연구)

  • Bae, Jin-Hyo;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2611-2625
    • /
    • 1996
  • A numerical method on multi-block technique by Bi-CGSTAB(Bi-Conjugate Gradient STABilized) solver has been proposed. The present multi-block technique can reduce the numerical manipulation greatly because the common regions at the interface of each block are not necessary. In order to test the computational performance of present multi-block technique, the flow characteristics in a T type duct system and a N type duct system have been investigated by three kinds of methods such as the single-block method, the previous multi-block technique and the multi-block technique with Bi-CGSTAB solver. The results indicated that the required CPU time by present multi block technique was shorter than that of other two numerical methods and the convergency history was shown very stable at the present multi-block technique.

A Fundamental Study on Lower Duct Flow of passive anti-rolling tanks System (수동형 감요수조의 하부덕트 유동에 관한 기초연구)

  • Lee, Cheol-Jae;Lim, Jeong-Sun;Jung, Han-Sic;Jung, Hyo-Min
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.265-269
    • /
    • 2006
  • Anti-Roll Tanks, also called Sloshing Tanks, is a rather common and sometimes an efficient method of limiting the roll angles. The important parameters, when considering using anti-roll tanks, are positioning, size, duct area, flow control device etc. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics around control damper and inlet area of duct for three kind of inclined angle $(\alpha=0^*,\;10^*\;and\;20^*)$. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal boundaries between flowing and stagnant zones and to extract velocity profiles at any selected sections of the lower duct for passive anti-rolling tanks system.

  • PDF

Improvement Noise Attenuation Performance of the Active Noise Control System Using RCMAC (RCMAC를 이용한 능동소음 제어시스템의 소음저감 성능개선)

  • Han, S.I.;Yeo, D.Y.;Kim, S.H.;Lee, K.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • In this paper, a recurrent cerebellar modulation articulation control (RCMAC) has been developed for improvement of noise attenuation performance in active noise control system. For the narrow band noise, a filter-x least mean square (FXLMS) method has bee frequently employed as an algorithm for active noise control (ANC) and has a partial satisfactory noise attenuation performance. However, noise attenuation performance of an ANC system with FXLMS method is poor for broad band noise and nonlinear path since it has linear filtering structure. Thus, an ANC system using RCMAC is proposed to improve this problem. Some simulations in duct system using harmonic motor noise and KTX cabin noise as a noise source were executed. It is shown that satisfactory noise attenuation performance can be obtained.

Pressure Characteristics According to the Duct Shapes of Turbo Blowers Connected in Serial (다단 블로어 덕트형상에 따른 압력특성 연구)

  • Park, Young-Bin;Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2010
  • Pressure characteristics according to the duct shapes of turbo blowers connected in serial have been performed to reduce pressure loss in the piping system. To analyze three-dimensional flow field in the turbo blower system, general analysis code, CFX, is introduced in the present work. SST turbulence model is applied to estimate the eddy viscosity. Throughout the numerical simulation for the turbo blower system having a various shape of a inlet guide, optimal inlet guide can be selected. It is found that the pressure loss in the piping system having the optimal inlet guide can be reduced by minimizing the inflow distortion at the upstream of the impeller. Detailed flow analysis of the blower system serially connected is also performed and analyzed.

Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry (입자영상유속계를 이용한 분기관내 유동가시화)

  • No, Hyeong-Un;Seo, Sang-Ho;Yu, Sang-Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • The objective of this study is to analyse the flow field in the branching duct by visualizing the flow phenomena using the PIV system. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. Water was used as the working fluid and the conifer powder as the tracer particles. The single-frame and two-frame methods of the PIV system and 2-frame of the grey level correlation method are applied to obtain the velocity vectors from the images captured in the flow filed. The velocity distributions in a lid-driven cavity flow are compared with the so-called standard experimental data, which was obtained from by 4-frame method in order to validate experimental results of the PIV measurements. The flow patterns of a Newtonian fluid in a branching duct were successfully visualized by using the PIV system and the sub-pixel and the area interpolation method were used to obtain the final velocity vectors. The velocity vectors obtained from the PIV system are in good agreement with the numerical results of the 3-dimensional branch flow. The results of numerical analyses and the PIV experiments for the three-dimensional flows in the branch ing duct show the recirculation zone distal to the branching point and the sizes of the recirculation length and height of the tow different methods are in good agreement.

  • PDF

Performance Evaluation of Multidrop Chamber Ventilation System in Apartment (공동주택내 다분기챔버형 환기시스템 적용을 통한 풍량분배 개선효과에 관한 연구)

  • Kim, Sung-Soo;Son, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.545-552
    • /
    • 2009
  • It is common to design the duct branches where to supply the required air flow for individual room in residential apartment house. And TAB process is applied to control the designed air volume with adjusting volume dampers and/or supply diffusers after fully installing the ventilation system. This process has been resulted increasing the initial cost for the residential ventilation system because of man-hour and accessories such as volume control damper or diffuser. However it is difficult to adjust the air volume adequately in small air duct branches in residential ventilation system. The purpose of this study is to figure out the performance of Multidrop chamber coupling system for the residential ventilation system.

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

A Study on the Fundamental Cause of Stall Stagnation Phenomena in Surges in Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.119-137
    • /
    • 2017
  • Although the stall stagnation phenomena have often been experienced in site and also analytically in numerical experiments in surges in systems of compressors and flow paths, the fundamental causes have not been identified yet. In order to clarify the situations, behaviours of infinitesimal disturbance waves superposed on a main flow were studied in a simplified one-dimensional flow model. A ratio of the amplifying rate of the system instability to the characteristic slope of the compressor element was surveyed as the instability enhancement factor. Numerical calculations have shown the following tendency of the factor. In the situation where both the sectional area ratio and the length ratio of the delivery flow-path to the suction duct are sufficiently large, the enhancement factors are greater in magnitude, which means occurrence of ordinary deep surges. However, in the situation where the area ratio and/or the length ratio is relatively smaller, the enhancement factor tends to lessen significantly, which situation tends to suppress deep surges for the same value of the characteristic slope. It could result in the stall stagnation condition. In the domain of area ratio vs. length ratio of the delivery duct to the suction duct, contour-lines of the enhancement factor behave qualitatively similar to those of the stall stagnation boundaries of a fan analytically obtained, suggesting that a certain range of the enhancement factor values could specify the stagnation occurrence. The significant decreases in the factors are observed to accompany appearances of phase lags and travelling waves in the wave motions, which macroscopically suggests breaking down of the complete surge actions of filling and emptying of the air in the delivery duct. The strength of the action is deeply related with acoustic interferences and is evaluated in terms of the volume-modified reduced resonance frequency proposed by the author. These observations have shown the fundamental cause and the sequence of the stall stagnation in principle.

The Analysis of Correlation Major System Factors with the Performance of Smoke Control Systems Using Pressure Differentials (차압제연설비의 성능과 관련된 시스템 및 환경 변수와의 상관성 분석)

  • Yeo, Yong-Ju;Kim, Hak-Jung;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • The smoke control systems using pressure differentials are already well known as the most reliable method to prevent the smoke infiltration into the emergency stairs or safe spaces. However, it is true that many problems are domestically pointed out due to the insufficient understanding and technology on the smoke control systems using pressure differentials. In this regard, this work analyzed the effect of major factors for smoke control system using pressure differentials such as a duct area, opening area of air supply damper, improvement on open vestibules, stack effect and location of air supply. In conclusion, adequate pressure differentials can not be maintained in small duct because the smaller duct area have the large friction loss. Especially, It is confirmed that the major factor for deterioration of smoke control system performance is stack effect that makes pressure differentials smaller in the lower floors.