• Title/Summary/Keyword: dual-cathode

Search Result 32, Processing Time 0.028 seconds

Simultaneous Determination of Glucose and Ethanol of Takju by Biosensor using Dual Cathode Electrode (Dual Cathode Electrode를 이용한 바이오센서로 탁주 중의 포도당 및 에탄올의 동시 측정)

  • Park, In-Seon;Kim, Jung-Ho;Kim, Tae-Jin;Kim, Nam-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.974-980
    • /
    • 1996
  • A biosensor was prepared with dual cathode electrode and immobilized enzyme membrane. A nylon net was used for the immobilization of glucose oxidase and alcohol oxidase. The immobilized enzymes were placed on the surface of the electrode which was prepared with one anode and two cathodes as an oxygen electrode. The determination of components by the biosensor was based on the consumption of dissolved oxygen. The optimum condition of this system was 0.1 M potassium phosphate buffer solution, pH 7.5 at $35^{\circ}C$. Glucose and ethanol in takju were simultaneously determined by the biosensor. Comparing with UV-spectrophotometer and gas chromatograph for cross checking, there was a good correlation between the biosensor and the conventional methods. Biosensor with dual cathode electrode required no clarification or pretreatments. It was used for simultaneous determination of glucose and ethanol during the fermentation of takju.

  • PDF

Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate (Single-cathode와 Dual-cathode 미생물연료전지의 탄소원과 질산성질소의 전류발생 특성)

  • Jang, Jae-Kyung;Lee, Eun-Young;Ryou, Young-Sun;Lee, Sung-Hyoun;Hwang, Ji-Hwan;Lee, Hyung-Mo;Kim, Jong-Goo;Kang, Youn-Koo;Kim, Young-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.382-386
    • /
    • 2011
  • Microbial fuel cells (MFC), devices that use bacteria as a catalyst to generate electricity, can utilize a variety of organic wastes as electron donors. The current generated may differ depending on the organic matter concentrations used, when other conditions, such as oxidant supply, proton transfer, internal resistance and so on, are not limiting factors. In these studies, a single-cathode type MFC (SCMFC) and dual-cathode type MFC (DCMFC) were used to ascertain the current's improvement through an increase in the contact area between the anode and the cathode compartments, because the cathode reaction is one of the most serious limiting factors in an MFC. Also an MFC was conducted to explore whether an improvement in electricity generation resulted from oxidizing the carbon sources and nitrates. About 250 mg $L^{-1}$ sodium acetate was fed to an anode compartment with a flow rate of 0.326 mL $min^{-1}$ by continuous mode. The current generated from the DCMFC was higher than the value produced from MFC with a single cathode. COD removal of dual-cathode MFC was also higher than that of single-cathode MFC. The nitrate didn't affect current generation at 2 mM, but when 4 and 8 mM nitrate was supplied, the current in the single-cathode and dual-cathode MFC was decreased by 98% from $5.97{\pm}0.13$ to $0.23{\pm}0.03$ mA and $8.40{\pm}0.23$ to $0.20{\pm}0.01$ mA, respectively. These results demonstrate that increasing of contact area of the anode and cathode can raise current generation by an improvement in the cathode reaction.

Emission Characteristics of Dual-Side Emission OLED with Al Cathode Thickness Variation (Al 음극 두께 변화에 따른 양면 발광 OLED의 발광 특성)

  • Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.174-178
    • /
    • 2015
  • We studied emission characteristics for blue fluorescent dual-side emission OLED with Al cathode thickness variation. In the bottom emission OLED of Al cathode with 10, 15, 20, 25, 30, and 150 nm thickness, maximum luminance showed 36.1, 8,130, 9,300, 12,000, 13,000, and $12,890cd/m^2$, and maximum current efficiency showed 2, 8.8, 10, 10.5, 10.8, and 11.4 cd/A, respectively. The emission characteristics of the bottom emission seemed to be improved according to decrease of resistance as the thickness of Al cathode increase. In the top emission OLED of Al cathode with 10, 15, 20, 25, and 30 nm thickness, maximum luminance showed 4.3, 351, 131, 88.6, and $33.2cd/m^2$, and maximum current efficiency showed 0.23, 0.38, 0.21, 0.16, and 0.09 cd/A, respectively. It yielded the highest maximum luminance and maximum current efficiency in Al cathode thickness 15 nm. It showed a tendency to decrease as the thickness of Al cathode increase. The reason for this is due to decrease of transmittance with increasing of Al cathode thickness. The electroluminescent spectra of bottom and top emission OLED were not change.

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram;Kwak, Sehyun;Pham, Hieu Quang;Jo, Hyuntak;Jeon, Do-Man;Yang, A-Reum;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.269-278
    • /
    • 2022
  • Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

The dual emitter structure for field emission light source (전계방출광원용 듀얼 에미터 특성 연구)

  • Kim, Kwang-Bok;Lee, Sun-Hee;Park, Ho-Seop;Yang, Dong-Wook;Kim, Dae-Jun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • The field emission lamps have the advantages to their cold cathode-characteristic and the eco-friendly, We realized that the dual emitter system showed very simple structure which gate and cathode electrodes are formed on the same glass surface. In this paper, we reported the properties of dual emitters depended on variation of gate width and spacing for optimum panel structure. In combination of dual emitter structure and bi-polar driving, electron beam spreads more than normal gate structure or diode structure, and emission uniformity increased in dual emitter structure at 5"-diagonal.

  • PDF

Characterization of Organic Light-Emitting Diode (OLED) with Dual Emission using Al:Au Cathode (Al:Au 음극층을 이용한 양면발광(dual emission) 유기 EL 소자의 Al 두께별 특성 평가)

  • Lee, Su-Hwan;Kim, Dal-Ho;Yang, Hee-Doo;Kim, Ji-Heon;Lee, Gon-Sub;Park, Jea-Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.47-51
    • /
    • 2008
  • The Al:Au double-layer metal electrode for use in transparent, dual emission of organic light-emitting diode (OLED) was fabricated. The electrode of Al:Au metals with various thicknesses was deposited by the vacuum thermal evaporation technique. For Al thickness of 1 nm, a bottom luminance of $4880\;cd/m^2$ was observed at 8 V. Otherwise, top luminance of $2020\;cd/m^2$ were observed at 8 V. In addition, the threshold voltages of the electrodes were 2.2 V. It was forward that the inserting 1 nm Al between LiF and Au enhanced electron injection with tunneling effect.

  • PDF

LIGBT with Dual Cathode for Improving Breakdown Characteristics

  • Kang, Ey-Gook;Moon, Seung-Hyun;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.16-19
    • /
    • 2000
  • Power transistors to be used in Power Integrated Circuits(PIC) are required to have low on resistance, fast switching speed, and high breakdown voltage. The lateral IGBTs(LIGBTs)are promising power devices for high voltage PIC applications, because of its superior device characteristics. In this paper, dual cathode LIGBT(DCIGBT) for high voltage is presented. We have verified the effectiveness of high blocking voltage in the new device by using two dimensional devices simulator. We have analyzed the forward blocking characteristics , the latch up performance and turn off characteristics of the proposed structure. Specially, we have focused forward blocking of LIGBT. The forward blocking voltage of conventional LIGBT and the proposed LIGBT are 120V and 165V, respectively. . The forward blocking characteristics of the proposed LIGBT is better than that of the conventional LIGBT. This forward blocking comparison exhibits a 1.5 times improvement in the proposed LIGBT.

  • PDF

Effect of Ammonium and Nitrate on Current Generation Using Dual-Cathode Microbial Fuel Cells

  • Jang, Jae-Kyung;Choi, Jung-Eun;Ryou, Young-Sun;Lee, Sung-Hyoun;Lee, Eun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.270-273
    • /
    • 2012
  • These studies were conducted to determine the effects of various concentrations of ammonium and nitrate on current generation using dual-cathode microbial fuel cells (MFCs). Current generation was not affected by ammonium up to $51.8{\pm}0.0$ mg/l, whereas $103.5{\pm}0.0$ mg/l ammonium chloride reduced the current slightly. On the other hand, when $60.0{\pm}0.0$ and $123.3{\pm}0.1$ mg/l nitrate were supplied, the current was decreased from $10.23{\pm}0.07$ mA to $3.20{\pm}0.24$ and $0.20{\pm}0.01$ mA, respectively. Nitrate did not seem to serve as a fuel for current generation in these studies. At this time, COD and nitrate removal were increased except at $123{\pm}0.1$ mg ${NO_3}^-/l$. These results show that proper management of ammonium and nitrate is very important for increasing the current in a microbial fuel cell.