DOI QR코드

DOI QR Code

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram (Department of Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kwak, Sehyun (Department of Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Pham, Hieu Quang (Department of Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Jo, Hyuntak (Department of Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Jeon, Do-Man (EG Corp.) ;
  • Yang, A-Reum (EG Corp.) ;
  • Song, Seung-Wan (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
  • Received : 2021.11.18
  • Accepted : 2021.12.29
  • Published : 2022.05.28

Abstract

Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry & Energy of Korea (10080025), the National Research Foundation grant funded by the Ministry of Science and ICT (2019R1A2C1084024, 2021M3H4A3A02086211) of Korea and Chungnam National University.

References

  1. H. Q. Pham, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, H. M. Jung, S.-W. Song, J. Electrochem. Soc., 2014, 161(14), A2002. https://doi.org/10.1149/2.1141412jes
  2. H. Q. Pham, E.-H. Hwang, Y.-G. Kwon, S.-W. Song, J. Power Sources, 2016, 323, 220-230. https://doi.org/10.1016/j.jpowsour.2016.05.038
  3. H. Q. Pham, E.-H. Hwang, Y.-G. Kwon, S.-W. Song, Adv. Mater. Interfaces, 2017, 4(24), 1700483. https://doi.org/10.1002/admi.201700483
  4. H. G. Kim, Y. J. Park, J. Electrochem. Sci. Technol., 2021, 12(4), 377-386. https://doi.org/10.33961/jecst.2021.00052
  5. W. Wang, P. N. Kumta, J. Power Sources., 2007, 172(2), 650-658. https://doi.org/10.1016/j.jpowsour.2007.05.025
  6. R. C. de Guzman, J. Yang, M. M. C. Cheng, S. O. Salley, K. Y. Simon Ng, J. Power Sources, 2014, 246, 335-345. https://doi.org/10.1016/j.jpowsour.2013.07.100
  7. J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao, T. Zhu, Nano Lett., 2013, 13(2), 709-715. https://doi.org/10.1021/nl304379k
  8. S. Dalavi, P. Guduru, B. L. Lucht, J. Electrochem. Soc., 2012, 159(5), A642. https://doi.org/10.1149/2.076205jes
  9. S.-W. Song, S.-W. Baek, Electrochem. Solid-State Lett., 2008, 12(2), A23. https://doi.org/10.1149/1.3028216
  10. C. C. Nguyen, S.-W. Song, J. Electrochem. Sci. Technol., 2013, 4(3), 108-112. https://doi.org/10.5229/JECST.2013.4.3.108
  11. R. Mogi, M. Inaba, S. -K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi, J. Electrochem. Soc., 2002, 149(12), A1578. https://doi.org/10.1149/1.1516770
  12. M. N. Obrovac, L. Christensen, Electrochem. Solid-State Lett., 2004, 7(5), A93. https://doi.org/10.1149/1.1652421
  13. J. R. Szczech, S. Jin, Energy Environ. Sci., 2011, 4, 56-72. https://doi.org/10.1039/C0EE00281J
  14. J. Xiao, W. Xu, D. Wang, D. Choi, W. Wang, X. Li, G. L. Graff, J. Liu, J.-G. Zhang, J. Electrochem. Soc., 2010, 157(10), A1047. https://doi.org/10.1149/1.3464767
  15. L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, Nano Energy, 2013, 2(3), 361-367. https://doi.org/10.1016/j.nanoen.2012.11.001
  16. J. K. Lee, K. B. Smith, C. M. Hayner, H. H. Kung, Chem. Commun., 2010, 46, 2025-2027. https://doi.org/10.1039/b919738a
  17. R. McMillan, H. Slegr, Z. X. Shu, W. Wang, J. Power Sources, 1999, 81-82, 20-26. https://doi.org/10.1016/S0378-7753(98)00201-8
  18. I. A. Profatilova, S. S. Kim, N. S. Choi, Electrochem. Acta, 2009, 54(19), 4445-4450. https://doi.org/10.1016/j.electacta.2009.03.032
  19. H. Nakai, T. Kubota, A. Kita, A. Kawashima, J. Electrochem. Soc., 2011, 158(7), A798. https://doi.org/10.1149/1.3589300
  20. D.-T. Nguyen, J. Kang, K.-M. Nam, Y. Paik, S.-W. Song, J. Power Sources, 2016, 303, 150-158. https://doi.org/10.1016/j.jpowsour.2015.10.089
  21. Y.-M. Lin, K. C. Klavetter, P. R. Abel, N. C. Davy, J. L. Snider, A. Heller, C. B. Mullins, Chem. Commun., 2012, 48, 7268-7270. https://doi.org/10.1039/c2cc31712e
  22. H. Jo, J. Kim, D.-T. Nguyen, K. K. Kang, D.-M. Jeon, A.-R. Yang, S.-W. Song, J. Phys. Chem. C, 2016, 120(39), 22466-22475. https://doi.org/10.1021/acs.jpcc.6b07570
  23. J.-W. Song, C. C. Nguyen, H. Choi, K.-H. Lee, K.-H. Han, Y.-J. Kim, S. Choy, S.-W. Song, J. Electrochem. Soc., 2011, 158(5), A458. https://doi.org/10.1149/1.3556638
  24. R. J. Gummow, A. de Kock, M. M. Thackeray, Solid State Ionics, 1994, 69(1), 59-67. https://doi.org/10.1016/0167-2738(94)90450-2
  25. D. H. Jang, Y. J. Shin, S. M. Oh, J. Electrochem. Soc., 1996, 143(7), 2204. https://doi.org/10.1149/1.1836981
  26. Y.-M. Lee, K. M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim, S.-W. Song, J. Phys. Chem. C., 2014, 118(20), 10631-10639. https://doi.org/10.1021/jp501670g
  27. H. Q. Pham, G. Kim, H. M. Jung, S.-W. Song, Adv. Funct. Mater., 2018, 28(2), 1704690. https://doi.org/10.1002/adfm.201704690
  28. N. Tran, L. Croguennec, C. Labrugere, C. Jordy, P. Biensan, C. Delmas, J. Electrochem. Soc., 2006, 153(2), A261. https://doi.org/10.1149/1.2138573
  29. R. A. Quinlan, Y. -C. Lu, Y. Saho-Horn, A. N. Mansour, J. Electrochem. Soc., 2013, 160(4), A669. https://doi.org/10.1149/2.069304jes
  30. F. Almalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach, J. Lampert, M. Schulz-Dobrick, A. Garsuch, J. Electrochem. Soc., 2013, 160(2), A324. https://doi.org/10.1149/2.070302jes
  31. P. K. Nayak, J. Grinblat, M. Levi, B. Markovsky, D. Aurbach, J. Electrochem. Soc., 2014, 161(10), A1534. https://doi.org/10.1149/2.0101410jes
  32. D. Y. W. Yu, K. Yanagida, J. Electrochem. Soc. 2011, 158(9), A1015. https://doi.org/10.1149/1.3609849
  33. Y.-S. Park, H. J. Bang, S. M. Oh, Y. K. Sun, S.-M. Lee, J. Power Sources, 2009, 190(2), 553-557. https://doi.org/10.1016/j.jpowsour.2009.01.067
  34. Y.-S. Park, T.-W. Lee, M. S. Shin, S.-H. Lim, S.-M. Lee, J. Electrochem. Soc., 2016, 163(14), A3078. https://doi.org/10.1149/2.1161614jes
  35. H. Q. Pham, B. J. Kim, H. Jo, S. Kang, S.-J. You, S.-W. Song, J. Electrochem. Soc., 2017, 164(13), A3045. https://doi.org/10.1149/2.0601713jes
  36. Y. Nakamura, T. Yoshino, M. Satish-Kumar, American Mineralogist, 2017, 102(1), 135-148. https://doi.org/10.2138/am-2017-5733
  37. E. Markervich, G. Salitra, M. D. Levi, D. Aurbach, J. Power Sources, 2005, 146(1-2), 146-150. https://doi.org/10.1016/j.jpowsour.2005.03.107
  38. J. Yang, A. Kraysberg, Y. Ein-Eli, J. Power. Sources, 2015, 282, 294-298. https://doi.org/10.1016/j.jpowsour.2015.02.044
  39. W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen, J. Mater. Chem. A, 2014, 2(23), 8668-8675. https://doi.org/10.1039/c4ta00106k