• 제목/요약/키워드: dual matrix

검색결과 176건 처리시간 0.023초

EQUIVALENCE BETWEEN SYMMETRIC DUAL PROGRAM AND MATRIX GAME

  • Kim, Moon-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.505-511
    • /
    • 2007
  • Recently, the equivalent relations between a symmetric dual problem and a matrix game B(x, y) were given in [6: D.S. Kim and K. Noh, J. Math. Anal. Appl. 298(2004), 1-13]. Using more simpler form of B(x, y) than one in [6], we establish the equivalence relations between a symmetric dual problem and a matrix game, and then give a numerical example illustrating our equivalence results.

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

Rotation-Free Transformation of the Coupling Matrix with Genetic Algorithm-Error Minimizing Pertaining Transfer Functions

  • Kahng, Sungtek
    • Journal of electromagnetic engineering and science
    • /
    • 제4권3호
    • /
    • pp.102-106
    • /
    • 2004
  • A novel Genetic Algorithm(GA)-based method is suggested to transform a coupling matrix to another, without the procedure of Matrix Rotation. This can remove tedious work like pivoting and deciding rotation angles needed for each of the iterations. The error function for the GA is simply formed and used as part of error minimization for obtaining the solution. An 8th order dual-mode elliptic integral function response filter is taken as an example to validate the present method.

선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법 (A primal-dual log barrier algorithm of interior point methods for linear programming)

  • 정호원
    • 경영과학
    • /
    • 제11권3호
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

Mueller Matrix Ellipsometry 제작 및 응용 (Development and Application of Mueller Matrix Ellipsometry)

  • 방경윤;경재선;오혜근;김옥경;안일신
    • 반도체디스플레이기술학회지
    • /
    • 제3권1호
    • /
    • pp.31-34
    • /
    • 2004
  • We develop Mueller-matrix spectroscopic ellipsometry based on dual compensator configuration. This technique is very powerful for measuring surface anisotropy in nano-scale, especially when materials show depolarization. Dual-rotating compensator configuration is adopted with the rotational ratio of 5:3 originally developed by Collins et al[1]. The instrument can provide 250-point spectra over the wavelength range from 230 nm to 820 nm in one irradiance waveform with minimum acquisition time of Tc=10 s. In this work, the results obtained in transmission modes are presented for the initial attempt. We present calibration procedures to diagnose the system from the utilized data collected in transmission mode without sample. We expect that the instrument will have important applications in thin films and surfaces that have anisotropy and inhomogeneity.

  • PDF

비밀자료 삽입용량을 증가시키기 위한 비밀 공유 기반의 이중 이미지 가역 정보은닉 기법 (Dual Image Reversible Data Hiding Scheme Based on Secret Sharing to Increase Secret Data Embedding Capacity)

  • 김평한;유관우
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1291-1306
    • /
    • 2022
  • The dual image-based reversible data hiding scheme embeds secret data into two images to increase the embedding capacity of secret data. The dual image-based reversible data hiding scheme can transmit a lot of secret data. Therefore, various schemes have been proposed until recently. In 2021, Chen and Hong proposed a dual image-based reversible data hiding scheme that embeds a large amount of secret data using a reference matrix, secret data, and bit values. However, in this paper, more secret data can be embedded than Chen and Hong's scheme. To achieve this goal, the proposed scheme generates polynomials and shared values using secret sharing scheme, and embeds secret data using reference matrix and septenary number, and random value. Experimental results show that the proposed scheme can transmit more secret data to the receiver while maintaining the image quality similar to other dual image-based reversible data hiding schemes.

내부점 선형계획법의 쌍대문제 전환에 대하여 (On dual transformation in the interior point method of linear programming)

  • 설동렬;박순달;정호원
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.289-292
    • /
    • 1996
  • In Cholesky factorization of the interior point method, dense columns of A matrix make dense Cholesky factor L regardless of sparsity of A matrix. We introduce a method to transform a primal problem to a dual problem in order to preserve the sparsity.

  • PDF

On Some Spaces Isomorphic to the Space of Absolutely q-summable Double Sequences

  • Capan, Husamettin;Basar, Feyzi
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.271-289
    • /
    • 2018
  • Let 0 < q < ${\infty}$. In this study, we introduce the spaces ${\mathcal{BV}}_q$ and ${\mathcal{LS}}_q$ of q-bounded variation double sequences and q-summable double series as the domain of four-dimensional backward difference matrix ${\Delta}$ and summation matrix S in the space ${\mathcal{L}}_q$ of absolutely q-summable double sequences, respectively. Also, we determine their ${\alpha}$- and ${\beta}-duals$ and give the characterizations of some classes of four-dimensional matrix transformations in the case 0 < q ${\leq}$ 1.

A Class of Check Matrices Constructed from Euclidean Geometry and Their Application to Quantum LDPC Codes

  • Dong, Cao;Yaoliang, Song
    • Journal of Communications and Networks
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2013
  • A new class of quantum low-density parity-check (LDPC) codes whose parity-check matrices are dual-containing matrices constructed based on lines of Euclidean geometries (EGs) is presented. The parity-check matrices of our quantum codes contain one and only one 4-cycle in every two rows and have better distance properties. However, the classical parity-check matrix constructed from EGs does not satisfy the condition of dual-containing. In some parameter conditions, parts of the rows in the matrix maybe have not any nonzero element in common. Notably, we propose four families of fascinating structure according to changes in all the parameters, and the parity-check matrices are adopted to satisfy the requirement of dual-containing. Series of matrix properties are proved. Construction methods of the parity-check matrices with dual-containing property are given. The simulation results show that the quantum LDPC codes constructed by this method perform very well over the depolarizing channel when decoded with iterative decoding based on the sum-product algorithm. Also, the quantum codes constructed in this paper outperform other quantum codes based on EGs.