DOI QR코드

DOI QR Code

On Some Spaces Isomorphic to the Space of Absolutely q-summable Double Sequences

  • Received : 2017.07.15
  • Accepted : 2018.06.06
  • Published : 2018.06.23

Abstract

Let 0 < q < ${\infty}$. In this study, we introduce the spaces ${\mathcal{BV}}_q$ and ${\mathcal{LS}}_q$ of q-bounded variation double sequences and q-summable double series as the domain of four-dimensional backward difference matrix ${\Delta}$ and summation matrix S in the space ${\mathcal{L}}_q$ of absolutely q-summable double sequences, respectively. Also, we determine their ${\alpha}$- and ${\beta}-duals$ and give the characterizations of some classes of four-dimensional matrix transformations in the case 0 < q ${\leq}$ 1.

Keywords

References

  1. C. R. Adams, On non-factorable transformations of double sequences, Proc. Natl. Acad. Sci. USA., 19(5)(1933), 564-567. https://doi.org/10.1073/pnas.19.5.564
  2. B. Altay and F. Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(2005), 70-90. https://doi.org/10.1016/j.jmaa.2004.12.020
  3. B. Altay and F. Basar, The fine spectrum and the matrix domain of the difference operator ${\Delta}$ on the sequence space ${\ell}_p$, (0
  4. F. Basar and B. Altay, Matrix mappings on the space bs(p) and its ${\alpha}-$, ${\beta}-$, and ${\gamma}-$duals, Aligarh Bull. Math., 21(2002), 79-91.
  5. F. Basar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(2003), 136-147. https://doi.org/10.1023/A:1025080820961
  6. F. Basar, B. Altay and M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal., 68(2)(2008), 273-287. https://doi.org/10.1016/j.na.2006.10.047
  7. F. Basar and H. Capan, On the paranormed spaces of regularly convergent double sequences, Results Math., 72(1-2)(2017), 893-906. https://doi.org/10.1007/s00025-017-0693-5
  8. F. Basar and H. Capan, On the paranormed space $M_u$(t) of double sequences, Bol. Soc. Parana. Mat., 37(3)(2019), 99-111.
  9. F. Basar and Y. Sever, The space $L_q$ of double sequences, Math. J. Okayama Univ., 51(2009), 149-157.
  10. H. Capan and F. Basar, Some paranormed difference spaces of double sequences, Indian J. Math., 58(3)(2016), 405-427.
  11. H. Capan and F. Basar, On the paranormed space L(t) of double sequences, Filomat, 32(3)(2018), 1043-1053. https://doi.org/10.2298/FIL1803043C
  12. B. Choudhary and S.K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5)(1993), 291-301.
  13. R. C. Cooke, Infinite matrices and sequence spaces, Macmillan and Co. Limited, London, 1950.
  14. S. Demiriz and O. Duyar, Domain of difference matrix of order one in some spaces of double sequences, Gulf J. Math., 3(3)(2015), 85-100.
  15. M. Kirisci and F. Basar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60(5)(2010), 1299-1309. https://doi.org/10.1016/j.camwa.2010.06.010
  16. A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321. https://doi.org/10.1007/BF01448977
  17. M. Yesilkayagil and F. Basar, Domain of Riesz mean in the space $L_{s}^{\ast}$, Filomat, 31(4)(2017), 925-940. https://doi.org/10.2298/FIL1704925Y
  18. M. Zeltser, Weak sequential completeness of ${\beta}-$duals of double sequence spaces, Anal. Math., 27(3)(2001), 223-238. https://doi.org/10.1023/A:1014382816165