DOI QR코드

DOI QR Code

SELF-DUAL CODES AND ANTIORTHOGONAL MATRICES OVER GALOIS RINGS

  • Han, Sunghyu (School of Liberal Arts Korea University of Technology and Education)
  • Received : 2018.01.05
  • Accepted : 2018.05.01
  • Published : 2018.05.15

Abstract

We study self-dual codes over Galois rings using the building-up construction method. In the construction, the existence of an antiorthogonal matrix is very important. In this study, we examine the existence problem of an antiorthogonal matrix over Galois rings.

Keywords

References

  1. G. Bini and F. Flamini, Finite Commutative Rings and Their Applications, Springer US, Boston, 2002.
  2. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265. https://doi.org/10.1006/jsco.1996.0125
  3. J. H. Conway and V. Pless, On the enumeration of self-dual codes, J. Combin. Theory ser. A, 28 (1980), 26-53.
  4. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, third ed. Springer, New York, 1999.
  5. M. Grassl and T. A. Gulliver, On circulant self-dual codes over small fields, Des. Codes Cryptogr. 52 (2009), 57-81. https://doi.org/10.1007/s10623-009-9267-1
  6. S. Han, A method for costructing self-dual codes over $Z_{2m}$ , Des. Codes Cryptogr. 75 (2015), 253-262. https://doi.org/10.1007/s10623-013-9907-3
  7. S. Han, On the problem of the existence of a square matrix U such that $UU^T$ = −I over $Z_{pm}$ , MDPI Information, 8 (2017), 1-8.
  8. M. Harada, The existence of a self-dual [70, 35, 12] code and formally self-dual codes, Finite Fields Appl. 3 (1997), 131-139. https://doi.org/10.1006/ffta.1996.0174
  9. W. C. Huffman and V. S. Pless, Fundamentals of Error-correcting Codes, Cambridge, Cambridge University Press, 2003.
  10. J.-L. Kim, New extremal self-dual codes of lengths 36, 38, and 58, IEEE Trans. Inform. Theory 47 (2001), 386-393. https://doi.org/10.1109/18.904540
  11. J.-L. Kim and Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (2004), 79-95. https://doi.org/10.1016/j.jcta.2003.10.003
  12. J.-L. Kim and Y. Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr. 45 (2007), 247-258. https://doi.org/10.1007/s10623-007-9117-y
  13. J.-L. Kim and Y. Lee, An Efficient Construction of Self Dual Codes, Bull. Korean Math. Soc. 52 (2015), 915-923. https://doi.org/10.4134/BKMS.2015.52.3.915
  14. H. Lee H. and Y. Lee, Construction of self-dual codes over finite rings $Z^m_p$ , J. Combin. Theory Ser. A 115, (2008), 407-422 . https://doi.org/10.1016/j.jcta.2007.07.001
  15. J. L. Massey, Orthogonal, antiorthogonal and self-orthogonal matrices and their codes, 1998. (http://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.36.3608)
  16. J. L. Massey, On Antiorthogonal Matrices and Their Codes, ISIT, Cambridge, MA, USA, 1998.
  17. G. H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067. https://doi.org/10.1109/18.841186
  18. E. Rains and N. J. A. Sloane, Self-dual codes. in: Pless V.S. Huffman W.C. (Eds.) Handbook of Coding Theory, Elsevier, Amsterdam, The Netherlands, 1998.