• Title/Summary/Keyword: dual manipulator

Search Result 60, Processing Time 0.031 seconds

Design and Control of Industrial Dual Arm Robot (산업용 양팔로봇의 설계 및 제어)

  • Park, Chan-Hun;Park, Kyoung-Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.58-65
    • /
    • 2008
  • The study on dual arm robot manipulator which consists of two 6-DOF srms and one 2-DOF torso is introduced. This dual arm robot manipulator is designed for automation of assembly process in automotive manufacturing line. Each industrial 6-DOF arm can be used as a stand-alone type of industrial robot manipulator with 6-DOF and as a manipulator part of dual arm robot at the same lime. These structures help the robot maker willing to succeed in emerging market of dual arm robots have the high competitive power for the current industrial robot market and the emerging market of dual arm robot at the same time. The research results of the design concept, workspace analysis and the PC-based controller will be introduced.

Analysis and Design of the Dual Arm Manipulator for Rescue Robot (구난 로봇용 양팔 머니퓰레이터 진동 해석 및 설계)

  • Park, Dong Il;Park, Chanhun;Kim, Doohyung;Kyung, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Dual arm manipulators have been developed for the entertainment purpose such as humanoid type or the industrial application such as automatic assembly. Nowadays, there are some issues for applying the dual arm robot system into the various fields. Especially, robots can substitute human and perform the dangerous activity such as search and rescue in the battle field or disaster. In the paper, the dual arm manipulator which can be adapted to the rescue robot with the mobile platform was developed. The kinematic design was proposed for the rescue activity and the required specification was determined through the kinematic analysis and the dynamic analysis in the various conditions. The proposed dual arm manipulator was manufactured based on the vibration analysis result and its performance was proved by the experiment.

Evaluation of Performance Index of Dual-arm manipulator for Multiple Shape Object Handling (Multiple Shape Object Handling을 위한 양팔로봇의 성능지수 평가)

  • Son, Joon-Bae;Chen, Hu;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.9-19
    • /
    • 2012
  • This paper proposes a performance index for the multiple shape object handling of dual arm manipulator to determine whether a robot is good or not. When the dual-arm manipulator grasps a fixed object and is posed, the dual-arm manipulator should procure a space to freely control the manipulator. As a performance evaluation parameter, each joint torque from current sensor signal is utilized. From the current information, torque and energy for each joint are estimated. In this paper an performance index for an unstructured object is defined by an energy-cost function, and stability analysis for each motion is derived by the maximum force to the object. The maximum force to the object is computed by the inertia of object and acceleration information of end-effector. The acceleration data are derived by the double derivation of each encoder signal. Manipulability measure which implies how efficiently the dual-arm manipulator can move with the grasped object, can be represented by the intersection of the two manipulability ellipsoids for the left and right arms. Effectiveness of the proposed algorithm has been verified through the practical simulations and real experiments.

Design of a service robot with dual manipulators and stereo vision (Dual Manipulator와 Stereo Vision을 이용한 서비스 로봇)

  • Lee, Dae-Hui;Lee, Hui-Guk;U, Gyeong-Seok;Ham, Sang-Hwa;Park, Ju-Hyeon;Lee, Seok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.743-746
    • /
    • 2003
  • The service robot, with stereo vision system and dual manipulator of four degree of freedom, has been designed. A fuzzy controller has been implemented for effectively actuating the manipulator of the robot. The fuzzy controller determines operation mode(single or dual manipulators) and orientation from the information of object position and distance. Through actual experimentation, we have confirmed that the robot system with human-like movement of grabber has been executed a rapid and effective motion.

  • PDF

Internal force-based coordinated motion control of dual redundant manipulator

  • Kim, Hyunsoo;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.237-240
    • /
    • 1996
  • Internal Force based control of dual redundant manipulator is proposed. One is resolved acceleration type control in the decoupled joint space which includes null motion space and the other is in the impedance control fashion in which the desired impedances are decoupled in three subspace, internal motion controlled space, orthogonal to that space, and the null motion controlled space. The internal force is formulated with its basis set meaningful. The object dynamics is also briefly evolved beforehand.

  • PDF

Impedance Parameter Update Method for Dual-arm Manipulator based on Operator's Muscle Activation (조작자 근육 활성도 기반 양팔 로봇의 임피던스 제어 파라미터 갱신 방법)

  • Baek, Chanryul;Cha, Gwangyeol;Kim, Junsik;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.347-352
    • /
    • 2022
  • The paper presents how to update impedance control parameters for dual-arm manipulators using EMG signals and motions of the operator. Since the hand motions of the dual-arm are modeled to be the mass-spring-damper system in this paper, the impedance parameter update method is an important issue to reflect the operator's force. However, task space inertia to be used as the mass parameter goes to infinity if the manipulator approaches a kinematic singularity. To alleviate this issue, the impedance (stiffness and damping) parameters are divided with a diagonal element of the task space inertia. Also, the stiffness and damping matrices are updated using the normalized EMG signals captured from the operator's forearm. Through this process, the motion of the dual-arm manipulator is more stabilized even though it approaches the kinematic singularity.

A Robust Adaptive Control of Robot Manipulator Based on TMS320C80

  • Han, Sung-Hyun;Jung, Dong-Yean;Shin, Heang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2540-2545
    • /
    • 2003
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Computation of Gradient of Manipulability for Kinematically Redundant Manipulators Including Dual Manipulators System

  • Park, Jonghoon;Wangkyun Chung;Youngil Youm
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.

  • PDF

Development of Collaborative Dual Manipulator System for Packaging Industrial Coils (산업용 코일 포장을 위한 협동 양팔 로봇 시스템의 개발)

  • Haeseong Lee;Yonghee Lee;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.236-243
    • /
    • 2024
  • This paper introduces a dual manipulator system designed to automate the packaging process of industrial coils, which exhibit higher variability than other structured industrial fields due to diverse commercial requirements. The conventional solution involves the direct-teaching method, where an operator instructs the robot on a target configuration. However, this method has distinct limitations, such as low flexibility in dealing with varied sizes and safety concerns for the operators handling large products. In this sense, this paper proposes a two-step approach for coil packaging: motion planning and assembly execution. The motion planning includes a Rapidly-exploring Random Tree algorithm and a smoothing method, allowing the robot to reach the target configuration. In the assembly execution, the packaging is considered a peg-in-hole assembly. Unlike typical peg-in-hole assembly handling two workpieces, the packaging includes three workpieces (e.g., coil, inner ring, side plate). To address this assembly, the paper suggests a suitable strategy for dual manipulation. Finally, the validity of the proposed system is demonstrated through experiments with three different sizes of coils, replicating real-world packaging situations.