• Title/Summary/Keyword: dual inhibitors

Search Result 42, Processing Time 0.028 seconds

Controlled ovarian hyperstimulation for fertility preservation in women with breast cancer: Practical issues

  • Park, So Yun;Jeong, Kyungah;Cho, Eun Hye;Chung, Hye Won
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In Korean women, a westernized lifestyle is associated with an increased risk of breast cancer. Fertility preservation has become an increasingly important issue for women with breast cancer, in accordance with substantial improvements in survival rate after cancer treatment. The methods of controlled ovarian hyperstimulation (COH) for fertility preservation in breast cancer patients have been modified to include aromatase inhibitors to reduce the potential harm associated with increased estradiol levels. Random-start COH and dual ovarian stimulation are feasible options to reduce the total duration of fertility preservation treatment and to efficiently collect oocytes or embryos. Using a gonadotropin-releasing hormone agonist as a trigger may improve cycle outcomes in breast cancer patients undergoing COH for fertility preservation. In young breast cancer patients with BRCA mutations, especially BRCA1 mutations, the possibility of diminished ovarian reserve may be considered, although further studies are necessary. Herein, we review the current literature on the practical issues surrounding COH for fertility preservation in women with breast cancer.

Degradations of human immunoglobulins and hemoglobin by a 60 kDa cysteine proteinase of Trichomonas vaginalis (질편모충의 60 kDa 시스테인 단백분해효소의 인체 면역글로불린 및 헤모글로빈 분해능)

  • Duk-Young MIN;Keun-Hee Hyun;Jae-Sook Ryu;Myoung-Hee AHN;Myung-Hwan CHO
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.4
    • /
    • pp.261-268
    • /
    • 1998
  • The present study was undertaken to investigate the role of cysteine proteinase of Trichomonas vaginalis in escaping from host defense mechanism. A cysteine proteinase of T. vaginalis was purified by affinity chromatography and gel filtration. Optimum pH for the purified proteinase activity was 6.0. The proteinase was inhibited by cysteine and serine proteinase inhibitors such as E-64, NEM, IAA, leupeptin. TPCK and TLCK, and also by $Hg^{2+}$, but not affected by serine-, metallo-, and aspartic proteinase inhibitors such as PMSF, EDTA and pepstatin A. However, it was activated by the cysteine proteinase activator, DTT. The molecular weight of a purified proteinase was 62 kDa on gel filtration and 60 kDa on SDS-PAGE. Interestingly, the purified proteinase was able to degrade serum IgA, secretory IgA, and serum IgG in time- and dose-dependent manners. In addition, the enzyme also degraded hemoglobin in a dose-dependent manner. These results suggest that the acidic cysteine proteinase of T. vaginalis may play a dual role for parasite survival in conferring escape from host humoral defense by degradation of immunoglobulins, and in supplying nutrients to parasites by degradation of hemoglobin.

  • PDF

Inhibition of Transient Receptor Potential Melastain 7 Enhances Apoptosis Induced by TRAIL in PC-3 cells

  • Lin, Chang-Ming;Ma, Ji-Min;Zhang, Li;Hao, Zong-Yao;Zhou, Jun;Zhou, Zhen-Yu;Shi, Hao-Qiang;Zhang, Yi-Fei;Shao, En-Ming;Liang, Chao-Zhao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4469-4475
    • /
    • 2015
  • Transient receptor potential melastain 7 (TRPM7) is a bifunctional protein with dual structure of both ion channel and protein kinase, participating in a wide variety of diseases including cancer. Recent researches have reported the mechanism of TRPM7 in human cancers. However, the correlation between TRPM7 and prostate cancer (PCa) has not been well studied. The objective of this study was to investigate the potential the role of TRPM7 in the apoptosis of PC-3 cells, which is the key cell of advanced metastatic PCa. In this study, we demonstrated the influence and potential function of TRPM7 on the PC-3 cells apoptosis induced by TNF-related apoptosis inducing-ligand (TRAIL). The study also found a novel up-regulated expression of TRPM7 in PC-3 cells after treating with TRAIL. Suppression of TRPM7 by TRPM7 non-specific inhibitors ($Gd^{3+}$ or 2-aminoethoxy diphenylborate (2-APB) ) not only markedly eliminated TRPM7 expression level, but also increased the apoptosis of TRAIL-treated PC-3 cells, which may be regulated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway accompany with up-regulated expression of cleaved Caspase-3, (TRAIL-receptor 1, death receptors 4) DR4, and (TRAIL-receptor 2, death receptors 5) DR5. Taken together, our findings strongly suggested that TRPM7 was involved in the apoptosis of PC-3 cells induced by TRAIL, indicating that TRPM7 may be applied as a therapeutic target for PCa.

Tapentadol: Can It Kill Two Birds with One Stone without Breaking Windows?

  • Chang, Eun Jung;Choi, Eun Ji;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.29 no.3
    • /
    • pp.153-157
    • /
    • 2016
  • Tapentadol is a novel oral analgesic with a dual mode of action as an agonist of the ${\mu}$-opioid receptor (MOR), and as a norepinephrine reuptake inhibitor (NRI) all in a single molecule. Immediate release (IR) tapentadol shows its analgesic effect quickly, at around 30 minutes. Its MOR agonistic action produces acute nociceptive pain relief; its role as an NRI brings about chronic neuropathic pain relief. Absorption is rapid, with a mean maximal serum concentration at 1.25-1.5 h after oral intake. It is present primarily in the form of conjugated metabolites after glucuronidation, and excretes rapidly and completely via the kidneys. The most common adverse reactions are nausea, dizziness, vomiting, and somnolence. Constipation is more common in use of the ER formulation. Precautions against concomitant use of central nervous system depressants, including sedatives, hypnotics, tranquilizers, general anesthetics, phenothiazines, other opioids, and alcohol, or use of tapentadol within 14 days of the cessation of monoamine oxidase inhibitors, are advised. The safety and efficacy have not been established for use during pregnancy, labor, and delivery, or for nursing mothers, pediatric patients less than 18 years of age, and cases of severe renal impairment and severe hepatic impairment. The major concerns for tapentadol are abuse, addiction, seeking behavior, withdrawal, and physical dependence. The presumed problem for use of tapentadol is to control the ratio of MOR agonist and NRI. In conclusion, tapentadol produces both nociceptive and neuropathic pain relief, but with worries about abuse and dependence.

Role of miR-511 in the Regulation of OATP1B1 Expression by Free Fatty Acid

  • Peng, Jin Fu;Liu, Li;Guo, Cheng Xian;Liu, Shi Kun;Chen, Xiao Ping;Huang, Li Hua;Xiang, Hong;Huang, Zhi Jun;Yuan, Hong;Yang, Guo Ping
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.400-406
    • /
    • 2015
  • MicroRNAs (miRNAs) are a family of non-coding RNA that are able to adjust the expression of many proteins, including ATP-binding cassette transporter and organic cation transporter. We sought to evaluate the effect of miR-511 on the regulation of OATP1B1 expression by free fatty acids. When using free fatty acids to stimulate Chang liver cells, we found that the expression of miR-511 increased significantly while the expression of OATP1B1 decreased. We also proved that SLCO1B1 is the target gene of miR-511 with a bioinformatics analysis and using the dual luciferase reporter assay. Furthermore, the expressions of SLCO1B1 and OATP1B1 decreased if transfecting Chang liver cells with miR-511, but did not increase when transfecting the inhibitors of miR-511 into steatosis cells. Our study indicates that miR-511 may play an important role in the regulation of OATP1B1 expression by free fatty acids.

Effects of Local Pancreatic Renin-Angiotensin System on the Microcirculation of Rat with Severe Acute Pancreatitis

  • Pan, Zhijian;Feng, Ling;Long, Haocheng;Wang, Hui;Feng, Jiarui;Chen, Feixiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.299-307
    • /
    • 2015
  • Severe acute pancreatitis (SAP) is normally related to multiorgan dysfunction and local complications. Studies have found that local pancreatic renin-angiotensin system (RAS) was significantly upregulated in drug-induced SAP. The present study aimed to investigate the effects of angiotensin II receptors inhibitor valsartan on dual role of RAS in SAP in a rat model and to elucidate the underlying mechanisms. 3.8% sodium taurocholate (1 ml/kg) was injected to the pancreatic capsule in order for pancreatitis induction. Rats in the sham group were injected with normal saline in identical locations. We also investigated the regulation of experimentally induced SAP on local RAS expression in the pancreas through determination of the activities of serum amylase, lipase and myeloperoxidase, histological and biochemical analysis, radioimmunoassay, fluorescence quantitative PCR and Western blot analysis. The results indicated that valsartan could effectively suppress the local RAS to protect against experimental acute pancreatitis through inhibition of microcirculation disturbances and inflammation. The results suggest that pancreatic RAS plays a critical role in the regulation of pancreatic functions and demonstrates application potential as AT1 receptor antagonists. Moreover, other RAS inhibitors could be a new therapeutic target in acute pancreatitis.

MiR-24 Simultaneously Regulates Both Oxytocin and Vasopressin (바소프레신과 옥시토신을 동시에 조절 마이크로RNA, miR-24)

  • Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.118-122
    • /
    • 2019
  • Oxytocin (Oxt) and vasopressin (Avp) are mainly synthesized in neuronal cells of the hypothalamus and are released from the posterior pituitary. The structure and sequences of Oxt and Avp genes imply that they are closely related and that they are the result of a duplication event during evolution. A previous study suggested that a small regulatory microRNA (miRNA), miR-24, regulated Oxt after binding. However, it is not clear whether this miRNA can modulate Avp simultaneously. The aim of the present study was to investigate putative targeting miRNAs of Avp, including miR-24. Targeted candidate miRNA oligonucleotides were transfected into COS-7 cells to elucidate the binding activity of miRNAs and Avp using dual-luciferase assays. The luciferase assay showed that only miR-24 displayed elevated binding activity with Avp as compared to a control and other candidate miRNAs. Transfection with seed mutants of Avp and miR-24 inhibitors clearly showed that miR-24 can directly bind to the Avp gene. These results provide new insight into the regulatory mechanism of neurohypophysial hormones by a single miRNA.

International Digestive Endoscopy Network consensus on the management of antithrombotic agents in patients undergoing gastrointestinal endoscopy

  • Seung Joo Kang;Chung Hyun Tae;Chang Seok Bang;Cheol Min Shin;Young-Hoon Jeong;Miyoung Choi;Joo Ha Hwang;Yutaka Saito;Philip Wai Yan Chiu;Rungsun Rerknimitr;Christopher Khor;Vu Van Khien;Kee Don Choi;Ki-Nam Shim;Geun Am Song;Oh Young Lee
    • Clinical Endoscopy
    • /
    • v.57 no.2
    • /
    • pp.141-157
    • /
    • 2024
  • Antithrombotic agents, including antiplatelet agents and anticoagulants, are widely used in Korea because of the increasing incidence of cardiocerebrovascular disease and the aging population. The management of patients using antithrombotic agents during endoscopic procedures is an important clinical challenge. The clinical practice guidelines for this issue, developed by the Korean Society of Gastrointestinal Endoscopy, were published in 2020. However, new evidence on the use of dual antiplatelet therapy and direct anticoagulant management has emerged, and revised guidelines have been issued in the United States and Europe. Accordingly, the previous guidelines were revised. Cardiologists were part of the group that developed the guideline, and the recommendations went through a consensus-reaching process among international experts. This guideline presents 14 recommendations made based on the Grading of Recommendations, Assessment, Development, and Evaluation methodology and was reviewed by multidisciplinary experts. These guidelines provide useful information that can assist endoscopists in the management of patients receiving antithrombotic agents who require diagnostic and elective therapeutic endoscopy. It will be revised as necessary to cover changes in technology, evidence, or other aspects of clinical practice.

MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD

  • Song, Hongming;Li, Dengfeng;Wu, Tianqi;Xie, Dan;Hua, Kaiyao;Hu, Jiashu;Deng, Xiaochong;Ji, Changle;Deng, Yijun;Fang, Lin
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.602-607
    • /
    • 2018
  • Aberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells. miR-301b expression was assessed in TNBC specimens and cell lines by quantitative Real-Time PCR (qRT-PCR). TNBC cells were transfected with miR-301b mimics, inhibitors or Cylindromatosis (CYLD) small interfering RNA (siRNA) using Lipofectamine 2000. The functional roles of miR-301b were determined by cell proliferation, colony formation, and apoptosis assays. Western blots and qRT-PCR were used to measure the expression of mRNAs and proteins in the cells. We found that miR-301b was upregulated in TNBC specimens and cell lines. Overexpression of miR-301b promoted cell proliferation in TNBC cells, while inhibited the apoptosis induced by 5-FU. CYLD was downregulated by miR-301b at both mRNA and protein levels in TNBC cells. Dual-luciferase report assay confirmed that miR-301b downregulated CYLD by direct interaction with the 3'-untranslated region(3'-UTR) of CYLD mRNA. $NF-{\kappa}B$ activation was mechanistically associated with miR-301b-mediated downregulation of CYLD. However, inhibition of miR-301b reversed all the effects of miR-301b. In conclusion, miR-301b plays an oncogenic role in TNBC possibly by downregulating CYLD and subsequently activating $NF-{\kappa}B$ p65, and this may provide a novel therapeutic approach for TNBC.

EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer

  • Ma, Jin;Zhang, Jun;Weng, Yuan-Chi;Wang, Jian-Cheng
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.868-880
    • /
    • 2018
  • Pancreatic cancer (PC) is one of the most aggressive cancers presenting with high rates of invasion and metastasis, and unfavorable prognoses. The current study aims to investigate whether EZH2/miR-139-5p axis affects epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in PC, and the mechanism how EZH2 regulates miR-139-5p. Human PC and adjacent normal tissues were collected to determine expression of EZH2 and miR-139-5p, and their relationship with clinicopathological features of PC. Human PC cell line was selected, and treated with miR-139-5p mimics/inhibitors, EZH2 vector or shEZH2 in order to validate the regulation of EZH2-mediated miR-139-5p in PC cells. Dual-luciferase report gene assay and chromatin immunoprecipitation assay were employed to identify the relationship between miR-139-5p and EZH2. RT-qPCR and Western blot analysis were conducted to determine the expression of miR-139-5p, EZH2 and EMT-related markers and ZEB1/2. Tumor formation ability and in vitro cell activity were also analyzed. Highly-expressed EZH2 and poorly-expressed miR-139-5p were detected in PC tissues, and miR-139-5p and EZH2 expressions were associated with patients at Stage III/IV, with LNM and highly-differentiated tumors. EZH2 suppressed the expression of miR-139-5p through up-regulating Histone 3 Lysine 27 Trimethylation (H3K27me3). EMT, cell proliferation, migration and invasion were impeded, and tumor formation and LNM were reduced in PC cells transfected with miR-139-5p mimics and shEZH2. MiR-139-5p transcription is inhibited by EZH2 through up-regulating H3K27me3, thereby down-regulation of EZH2 and up-regulation of miR-139-5p impede EMT and LNM in PC. In addition, the EZH2/miR-139-5p axis presents as a promising therapeutic strategy for the treatment of PC.