DOI QR코드

DOI QR Code

EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer

  • Ma, Jin (Department of Gastroenterology, Luwan Branch of Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine) ;
  • Zhang, Jun (Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine) ;
  • Weng, Yuan-Chi (Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine) ;
  • Wang, Jian-Cheng (Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine)
  • Received : 2018.03.10
  • Accepted : 2018.08.13
  • Published : 2018.09.30

Abstract

Pancreatic cancer (PC) is one of the most aggressive cancers presenting with high rates of invasion and metastasis, and unfavorable prognoses. The current study aims to investigate whether EZH2/miR-139-5p axis affects epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in PC, and the mechanism how EZH2 regulates miR-139-5p. Human PC and adjacent normal tissues were collected to determine expression of EZH2 and miR-139-5p, and their relationship with clinicopathological features of PC. Human PC cell line was selected, and treated with miR-139-5p mimics/inhibitors, EZH2 vector or shEZH2 in order to validate the regulation of EZH2-mediated miR-139-5p in PC cells. Dual-luciferase report gene assay and chromatin immunoprecipitation assay were employed to identify the relationship between miR-139-5p and EZH2. RT-qPCR and Western blot analysis were conducted to determine the expression of miR-139-5p, EZH2 and EMT-related markers and ZEB1/2. Tumor formation ability and in vitro cell activity were also analyzed. Highly-expressed EZH2 and poorly-expressed miR-139-5p were detected in PC tissues, and miR-139-5p and EZH2 expressions were associated with patients at Stage III/IV, with LNM and highly-differentiated tumors. EZH2 suppressed the expression of miR-139-5p through up-regulating Histone 3 Lysine 27 Trimethylation (H3K27me3). EMT, cell proliferation, migration and invasion were impeded, and tumor formation and LNM were reduced in PC cells transfected with miR-139-5p mimics and shEZH2. MiR-139-5p transcription is inhibited by EZH2 through up-regulating H3K27me3, thereby down-regulation of EZH2 and up-regulation of miR-139-5p impede EMT and LNM in PC. In addition, the EZH2/miR-139-5p axis presents as a promising therapeutic strategy for the treatment of PC.

Keywords

References

  1. Adsay, N.V., Bagci, P., Tajiri, T., Oliva, I., Ohike, N., Balci, S., Gonzalez, R.S., Basturk, O., Jang, K.T., and Roa, J.C. (2012). Pathologic staging of pancreatic, ampullary, biliary, and gallbladder cancers: pitfalls and practical limitations of the current AJCC/UICC TNM staging system and opportunities for improvement. Semin Diagn Pathol. 29, 127-141. https://doi.org/10.1053/j.semdp.2012.08.010
  2. Au, S.L., Wong, C.C., Lee, J.M., Fan, D.N., Tsang, F.H., Ng, I.O., and Wong, C.M. (2012). Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 56, 622-631. https://doi.org/10.1002/hep.25679
  3. Bian, Z., Zhang, J., Li, M., Feng, Y., Yao, S., Song, M., Qi, X., Fei, B., Yin, Y., Hua, D., et al. (2017). Long non-coding RNA LINC00152 promotes cell proliferation, metastasis, and confers 5-FU resistance in colorectal cancer by inhibiting miR-139-5p. Oncogenesis 6, 395. https://doi.org/10.1038/s41389-017-0008-4
  4. Cao, Q., Yu, J., Dhanasekaran, S.M., Kim, J.H., Mani, R.S., Tomlins, S.A., Mehra, R., Laxman, B., Cao, X., Yu, J., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274-7284. https://doi.org/10.1038/onc.2008.333
  5. Chen, L., Ma, C., Bian, Y., Shao, C., Wang, T., Li, J., Chong, X., Su, L., and Lu, J. (2017). Aberrant expression of STYK1 and E-cadherin confer a poor prognosis for pancreatic cancer patients. Oncotarget 8, 111333-111345.
  6. Chen, Y., Xie, D., Yin Li, W., Man Cheung, C., Yao, H., Chan, C.Y., Chan, C.Y., Xu, F.P., Liu, Y.H., Sung, J.J., et al. (2010). RNAi targeting EZH2 inhibits tumor growth and liver metastasis of pancreatic cancer in vivo. Cancer Lett. 297, 109-116. https://doi.org/10.1016/j.canlet.2010.05.003
  7. Di Leva, G., and Croce, C.M. (2010). Roles of small RNAs in tumor formation. Trends Mol Med. 16, 257-267. https://doi.org/10.1016/j.molmed.2010.04.001
  8. Ebrahimi, S., Hosseini, M., Ghasemi, F., Shahidsales, S., Maftouh, M., Akbarzade, H., Parizadeh, S.A., Hassanian, S.M., and Avan, A. (2016). Circulating microRNAs as potential diagnostic, prognostic and therapeutic targets in pancreatic cancer. Curr. Pharm. Des. 22, 6444-6450.
  9. Feng, H., Wang, Y., Su, J., Liang, H., Zhang, C.Y., Chen, X., and Yao, W. (2016). MicroRNA-148a suppresses the proliferation and migration of pancreatic cancer cells by down-regulating ErbB3. Pancreas 45, 1263-1271. https://doi.org/10.1097/MPA.0000000000000677
  10. Gayral, M., Jo, S., Hanoun, N., Vignolle-Vidoni, A., Lulka, H., Delpu, Y., Meulle, A., Dufresne, M., Humeau, M., Chalret du Rieu, M., et al. (2014). MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World J. Gastroenterol. 20, 11199-11209. https://doi.org/10.3748/wjg.v20.i32.11199
  11. Han, T., Jiao, F., Hu, H., Yuan, C., Wang, L., Jin, Z.L., Song, W.F., and Wang, L.W. (2016). EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer. Oncotarge. 7, 11194-11207.
  12. Hartwig, W., and Buchler, M.W. (2013). Pancreatic cancer: current options for diagnosis, staging and therapeutic management. Gastrointest Tumors 1, 41-52. https://doi.org/10.1159/000354992
  13. Hu, W., Jia, X., Gao, Y., and Zhang, Q. (2018). Chaetospirolactone reverses the apoptotic resistance towards TRAIL in pancreatic cancer. Biochem. Biophys. Res. Commun. 495, 621-628. https://doi.org/10.1016/j.bbrc.2017.10.144
  14. Hu, Y., Deng, C., Zhang, H., Zhang, J., Peng, B., and Hu, C. (2017). Long non-coding RNA XIST promotes cell growth and metastasis through regulating miR-139-5p mediated Wnt/beta-catenin signaling pathway in bladder cancer. Oncotarget 8, 94554-94568.
  15. Jin, X., Yang, C., Fan, P., Xiao, J., Zhang, W., Zhan, S., Liu, T., Wang, D., and Wu, H. (2017). CDK5/FBW7-dependent ubiquitination and degradation of EZH2 inhibits pancreatic cancer cell migration and invasion. J. Biol. Chem. 292, 6269-6280. https://doi.org/10.1074/jbc.M116.764407
  16. Kim, K., Lu, Z., and Hay, E.D. (2002). Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol. Int. 26, 463-476. https://doi.org/10.1006/cbir.2002.0901
  17. Kim, T., Veronese, A., Pichiorri, F., Lee, T.J., Jeon, Y.J., Volinia, S., Pineau, P., Marchio, A., Palatini, J., Suh, S.S., et al. (2011). p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208, 875-883. https://doi.org/10.1084/jem.20110235
  18. Li, J., Su, L., Gong, Y.Y., Ding, M.L., Hong, S.B., Yu, S., and Xiao, H.P. (2017). Downregulation of miR-139-5p contributes to the antiapoptotic effect of liraglutide on the diabetic rat pancreas and INS-1 cells by targeting IRS1. PLoS One 12, e0173576. https://doi.org/10.1371/journal.pone.0173576
  19. Li, Q., Liang, X., Wang, Y., Meng, X., Xu, Y., Cai, S., Wang, Z., Liu, J., and Cai, G. (2016). miR-139-5p Inhibits the Epithelial-Mesenchymal Transition and Enhances the Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating BCL2. Sci. Rep. 6, 27157. https://doi.org/10.1038/srep27157
  20. Liu, C., Cheng, H., Shi, S., Cui, X., Yang, J., Chen, L., Cen, P., Cai, X., Lu, Y., Wu, C., et al. (2013). MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr. Mol. Med. 13, 467-478. https://doi.org/10.2174/1566524011313040001
  21. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  22. Ma, Z., Huang, H., Wang, J., Zhou, Y., Pu, F., Zhao, Q., Peng, P., Hui, B., Ji, H., and Wang, K. (2017). Long non-coding RNA SNHG15 inhibits P15 and KLF2 expression to promote pancreatic cancer proliferation through EZH2-mediated H3K27me3. Oncotarget 8, 84153-84167.
  23. Miao, F., Zhu, J., Chen, Y., Tang, N., Wang, X., and Li, X. (2016). MicroRNA-183-5p promotes the proliferation, invasion and metastasis of human pancreatic adenocarcinoma cells. Oncol. Lett. 11, 134-140. https://doi.org/10.3892/ol.2015.3872
  24. Mody, H.R., Hung, S.W., AlSaggar, M., Griffin, J., and Govindarajan, R. (2016). Inhibition of S-adenosylmethionine-dependent methyltransferase attenuates TGF${\beta}$1-Induced EMT and metastasis in pancreatic cancer: putative roles of miR-663a and miR-4787-5p. Mol. Cancer Res. 14, 1124-1135. https://doi.org/10.1158/1541-7786.MCR-16-0083
  25. Ougolkov, A.V., Bilim, V.N., and Billadeau, D.D. (2008). Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin. Cancer Res. 14, 6790-6796. https://doi.org/10.1158/1078-0432.CCR-08-1013
  26. Qi, W., Zhao, K., Gu, J., Huang, Y., Wang, Y., Zhang, H., Zhang, M., Zhang, J., Yu, Z., Li, L., et al. (2017). An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat. Chem. Biol. 13, 381-388. https://doi.org/10.1038/nchembio.2304
  27. Reijm, E.A., Timmermans, A.M., Look, M.P., Meijer-van Gelder, M.E., Stobbe, C.K., van Deurzen, C.H., Martens, J.W., Sleijfer, S., Foekens, J.A., Berns, P.M., et al. (2014). High protein expression of EZH2 is related to unfavorable outcome to tamoxifen in metastatic breast cancer. Ann. Oncol. 25, 2185-2190. https://doi.org/10.1093/annonc/mdu391
  28. Sclafani, F., Iyer, R., Cunningham, D., and Starling, N. (2015). Management of metastatic pancreatic cancer: Current treatment options and potential new therapeutic targets. Crit. Rev. Oncol. Hematol. 95, 318-336. https://doi.org/10.1016/j.critrevonc.2015.03.008
  29. Shen, K., Mao, R., Ma, L., Li, Y., Qiu, Y., Cui, D., Le, V., Yin, P., Ni, L., and Liu, J. (2014). Post-transcriptional regulation of the tumor suppressor miR-139-5p and a network of miR-139-5p-mediated mRNA interactions in colorectal cancer. FEBS J. 281, 3609-3624. https://doi.org/10.1111/febs.12880
  30. Siegel, R.L., Miller, K.D., and Jemal, A. (2017). Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7-30. https://doi.org/10.3322/caac.21387
  31. Sun, D., Layer, R., Mueller, A.C., Cichewicz, M.A., Negishi, M., Paschal, B.M., and Dutta, A. (2014). Regulation of several androgeninduced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 33, 1448-1457. https://doi.org/10.1038/onc.2013.77
  32. Sun, C., Sang, M., Li, S., Sun, X., Yang, C., Xi, Y., Wang, L., Zhang, F., Bi, Y., Fu, Y., et al. (2015). Hsa-miR-139-5p inhibits proliferation and causes apoptosis associated with down-regulation of c-Met. Oncotarget 6, 39756-39792.
  33. Wang, Y., Li, J., Xu, C., and Zhang, X. (2017). MicroRNA-139-5p inhibit cell proliferation and invasion by targeting RHO-associated coiled-coil containing protein kinase 2 in ovarian cancer. Oncol. Res. doi: 10.3727/096504017X14974343584989. [Epub ahead of print].
  34. Xu, J., Zhu, W., Xu, W., Yao, W., Zhang, B., Xu, Y., Ji, S., Liu, C., Long, J., Ni, Q., et al. (2013). Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin. Curr. Mol. Med. 13, 387-400.
  35. Yang, Q., Wang, Y., Lu, X., Zhao, Z., Zhu, L., Chen, S., Wu, Q., Chen, C., and Wang, Z. (2015). MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget 6, 3268-3279.
  36. Yonemori, M., Seki, N., Yoshino, H., Matsushita, R., Miyamoto, K., Nakagawa, M., and Enokida, H. (2016). Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci. 107, 1233-1242. https://doi.org/10.1111/cas.13002
  37. Zhang, H.D., Jiang, L.H., Sun, D.W., Li, J., and Tang, J.H. (2015). MiR-139-5p: promising biomarker for cancer. Tumour Biol. 36, 1355-1365. https://doi.org/10.1007/s13277-015-3199-3
  38. Zhang, Z., Che, X., Yang, N., Bai, Z., Wu, Y., Zhao, L., and Pei, H. (2017). miR-135b-5p Promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomed. Pharmacother. 96, 1341-1348. https://doi.org/10.1016/j.biopha.2017.11.074
  39. Zhang, J., Zhang, L., Li, C., Yang, C., Li, L., Song, S., Wu, H., Liu, F., Wang, L., and Gu, J. (2018). LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell Oncol (Dordr). 41, 73-84.

Cited by

  1. BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer vol.41, pp.12, 2018, https://doi.org/10.14348/molcells.2018.0425
  2. MicroRNA‐139 is a predictor of prostate cancer recurrence and inhibits growth and migration of prostate cancer cells through cell cycle arrest and targeting IGF1R and AXL vol.79, pp.12, 2019, https://doi.org/10.1002/pros.23871
  3. ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis vol.38, pp.1, 2018, https://doi.org/10.1186/s13046-019-1340-7
  4. Coexpression Analysis of the EZH2 Gene Using The Cancer Genome Atlas and Oncomine Databases Identifies Coexpressed Genes Involved in Biological Networks in Breast Cancer, Glioblastoma, and Prostate Ca vol.26, pp.None, 2018, https://doi.org/10.12659/msm.922346
  5. microRNA-139-3p Inhibits Malignant Behaviors of Laryngeal Cancer Cells via the KDM5B/SOX2 Axis and the Wnt/β-Catenin Pathway vol.12, pp.None, 2018, https://doi.org/10.2147/cmar.s268871
  6. MicroRNA-33b Suppresses Epithelial–Mesenchymal Transition Repressing the MYC–EZH2 Pathway in HER2+ Breast Carcinoma vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.01661
  7. The Emerging Roles of Heterochromatin in Cell Migration vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00394
  8. Prognostic value of microRNAs in pancreatic cancer: a meta-analysis vol.12, pp.10, 2018, https://doi.org/10.18632/aging.103214
  9. EZH2 facilitates BMI1-dependent hepatocarcinogenesis through epigenetically silencing microRNA-200c vol.9, pp.11, 2018, https://doi.org/10.1038/s41389-020-00284-w
  10. Interweaving Tumor Heterogeneity into the Cancer Epigenetic/Metabolic Axis vol.33, pp.13, 2018, https://doi.org/10.1089/ars.2019.7942
  11. LINC00152 upregulates ZEB1 expression and enhances epithelial-mesenchymal transition and oxaliplatin resistance in esophageal cancer by interacting with EZH2 vol.20, pp.1, 2018, https://doi.org/10.1186/s12935-020-01620-1
  12. EZH2 promotes the expression of LPA1 by mediating microRNA-139 promoter methylation to accelerate the development of ovarian cancer vol.20, pp.1, 2020, https://doi.org/10.1186/s12935-020-01622-z
  13. Ultrasound-Targeted Microbubble Destruction-Mediated Downregulation of EZH2 Inhibits Stemness and Epithelial-Mesenchymal Transition of Liver Cancer Stem Cells vol.14, pp.None, 2021, https://doi.org/10.2147/ott.s269589
  14. Development of Biomarker Signatures Associated with Anoikis to Predict Prognosis in Endometrial Carcinoma Patients vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/3375297
  15. miR-101-3p Serves as a Tumor Suppressor for Renal Cell Carcinoma and Inhibits Its Invasion and Metastasis by Targeting EZH2 vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9950749
  16. miR-139-5p promotes neovascularization in diabetic retinopathy by regulating the phosphatase and tensin homolog vol.44, pp.2, 2018, https://doi.org/10.1007/s12272-021-01308-8
  17. Histone methylation in pancreatic cancer and its clinical implications vol.27, pp.36, 2018, https://doi.org/10.3748/wjg.v27.i36.6004