DOI QR코드

DOI QR Code

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway

  • Chen, Liang-Liang (Department of Surgical Oncology, Ningbo No.2 Hospital) ;
  • Gao, Ge-Xin (School of Nursing, Wenzhou Medical University) ;
  • Shen, Fei-Xia (Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Chen, Xiong (Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Gong, Xiao-Hua (Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Wu, Wen-Jun (Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University)
  • Received : 2018.03.08
  • Accepted : 2018.07.29
  • Published : 2018.09.30

Abstract

As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the $Wnt/{\beta}-catenin$ signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, $Wnt/{\beta}-catenin$ signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated $Wnt/{\beta}-catenin$ signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the $Wnt/{\beta}-catenin$ signaling pathway. Besides, $si-{\beta}-catenin$ was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the $Wnt/{\beta}-catenin$ signaling pathway in human PTC.

Keywords

References

  1. Astudillo, P., and Larrain, J. (2014). Wnt signaling and cell-matrix adhesion. Curr. Mol. Med. 14, 209-220. https://doi.org/10.2174/1566524014666140128105352
  2. Astudillo, P., Carrasco, H., and Larrain, J. (2014). Syndecan-4 inhibits Wnt/${\beta}$-catenin signaling through regulation of low-densitylipoprotein receptor-related protein (LRP6) and R-spondin 3. Int. J. Biochem. Cell Biol. 46, 103-112. https://doi.org/10.1016/j.biocel.2013.11.012
  3. Bai, D., Sun, H., Wang, X., Lou, H., Zhang, J., Wang, X., and Jiang, L. (2017). MiR-150 Inhibits cell growth in vitro and in vivo by restraining the RAB11A/WNT/${\beta}$-catenin pathway in thyroid cancer. Med. Sci. Monit. 23, 4885-4894. https://doi.org/10.12659/MSM.906997
  4. Brown, R.L., de Souza, J.A., and Cohen, E.E. (2011). Thyroid cancer: burden of illness and management of disease. J. Cancer 2, 193-199. https://doi.org/10.7150/jca.2.193
  5. Cancer Genome Atlas Research Network (2014). Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676-690. https://doi.org/10.1016/j.cell.2014.09.050
  6. Cho, I.R., Koh, S.S., Min, H.J., Kim, S.J., Lee, Y., Park, E.H., Ratakorn, S., Jhun, B.H., Oh, S., Johnston, R.N., et al. (2011). Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the expression of ${\beta}$-catenin, leading to a rapid proliferation of pancreatic cells. Exp. Mol. Med. 43, 82-90. https://doi.org/10.3858/emm.2011.43.2.010
  7. Cho, S.W., Lee, E.J., Kim, H., Kim, S.H., Ahn, H.Y., Kim, Y.A., Yi, K.H., Park, D.J., Shin, C.S., Ahn, S.H., et al. (2013). Dickkopf-1 inhibits thyroid cancer cell survival and migration through regulation of ${\beta}$-catenin/E-cadherin signaling. Mol. Cell. Endocrinol. 366, 90-98. https://doi.org/10.1016/j.mce.2012.12.007
  8. Chung, K.W., Kim, S.W., and Kim, S.W. (2012). Gene expression profiling of papillary thyroid carcinomas in Korean patients by oligonucleotide microarrays. J. Korean Surg. Soc. 82, 271-280. https://doi.org/10.4174/jkss.2012.82.5.271
  9. Czabotar, P.E., Westphal, D., Dewson, G., Ma, S., Hockings, C., Fairlie, W.D., Lee, E.F., Yao, S., Robin, A.Y., Smith, B.J., et al. (2013). Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519-531. https://doi.org/10.1016/j.cell.2012.12.031
  10. Da, C., Wu, K., Yue, C., Bai, P., Wang, R., Wang, G., Zhao, M., Lv, Y., and Hou, P. (2017). N-cadherin promotes thyroid tumorigenesis through modulating major signaling pathways. Oncotarget 8, 8131-8142.
  11. Echtermeyer, F., Harendza, T., Hubrich, S., Lorenz, A., Herzog, C., Mueller, M., Schmitz, M., Grund, A., Larmann, J., Stypmann, J., et al. (2011). Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling. Cardiovasc. Res. 92, 123-131. https://doi.org/10.1093/cvr/cvr149
  12. Erdem, M., Erdem, S., Sanli, O., Sak, H., Kilicaslan, I., Sahin, F., and Telci, D. (2014). Up-regulation of TGM2 with ITGB1 and SDC4 is important in the development and metastasis of renal cell carcinoma. Urol. Oncol. 32, 25 e13-20. https://doi.org/10.1016/j.urolonc.2012.08.022
  13. Francis, G.L., Waguespack, S.G., Bauer, A.J., Angelos, P., Benvenga, S., Cerutti, J.M., Dinauer, C.A., Hamilton, J., Hay, I.D., Luster, M., et al. (2015). Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 25, 716-759. https://doi.org/10.1089/thy.2014.0460
  14. Fujita, A., Sato, J.R., Rodrigues Lde, O., Ferreira, C.E., and Sogayar, M.C. (2006). Evaluating different methods of microarray data normalization. BMC bioinformatics 7, 469. https://doi.org/10.1186/1471-2105-7-469
  15. Gilbert-Sirieix, M., Makoukji, J., Kimura, S., Talbot, M., Caillou, B., Massaad, C., and Massaad-Massade, L. (2011). Wnt/${\beta}$-catenin signaling pathway is a direct enhancer of thyroid transcription factor-1 in human papillary thyroid carcinoma cells. PloS one 6, e22280. https://doi.org/10.1371/journal.pone.0022280
  16. Hellmann, F., Verdi, M., Schlemper, B.R., Jr., and Caponi, S. (2014). 50th anniversary of the declaration of Helsinki: the double standard was introduced. Arch. Med. Res. 45, 600-601. https://doi.org/10.1016/j.arcmed.2014.10.005
  17. Huang, J., Xiao, D., Li, G., Ma, J., Chen, P., Yuan, W., Hou, F., Ge, J., Zhong, M., Tang, Y., et al. (2014). EphA2 promotes epithelialmesenchymal transition through the Wnt/${\beta}$-catenin pathway in gastric cancer cells. Oncogene 33, 2737-2747. https://doi.org/10.1038/onc.2013.238
  18. Jung, C.K., Little, M.P., Lubin, J.H., Brenner, A.V., Wells, S.A., Jr., Sigurdson, A.J., and Nikiforov, Y.E. (2014). The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J. Clin. Endocrinol. Metab. 99, E276-285. https://doi.org/10.1210/jc.2013-2503
  19. Lee, M.A., Park, J.H., Rhyu, S.Y., Oh, S.T., Kang, W.K., and Kim, H.N. (2014). Wnt3a expression is associated with MMP-9 expression in primary tumor and metastatic site in recurrent or stage IV colorectal cancer. BMC Cancer 14, 125. https://doi.org/10.1186/1471-2407-14-125
  20. Lendorf, M.E., Manon-Jensen, T., Kronqvist, P., Multhaupt, H.A., and Couchman, J.R. (2011). Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma. J. Histochem. Cytochem. 59, 615-629. https://doi.org/10.1369/0022155411405057
  21. Li, X., Abdel-Mageed, A.B., and Kandil, E. (2012). BRAF mutation in papillary thyroid carcinoma. Int. J. Clin. Exp. Med. 5, 310-315.
  22. Liu, W., Chen, Y., Xie, H., Guo, Y., Ren, D., Li, Y., Jing, X., Li, D., Wang, X., Zhao, M., et al. (2018). TIPE1 suppresses invasion and migration through down-regulating Wnt/${\beta}$-catenin pathway in gastric cancer. J. Cell. Mol. Med. 22, 1103-1117.
  23. Looyenga, B.D., Furge, K.A., Dykema, K.J., Koeman, J., Swiatek, P.J., Giordano, T.J., West, A.B., Resau, J.H., Teh, B.T., and MacKeigan, J.P. (2011). Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc. Natl. Acad. Sci. USA 108, 1439-1444. https://doi.org/10.1073/pnas.1012500108
  24. Lu, T., Bao, Z., Wang, Y., Yang, L., Lu, B., Yan, K., Wang, S., Wei, H., Zhang, Z., and Cui, G. (2016). Karyopherin${\beta}$1 regulates proliferation of human glioma cells via Wnt/${\beta}$-catenin pathway. Biochem. Biophys. Res. Commun. 478, 1189-1197. https://doi.org/10.1016/j.bbrc.2016.08.093
  25. Lv, N., Shan, Z., Gao, Y., Guan, H., Fan, C., Wang, H., and Teng, W. (2016). Twist1 regulates the epithelial-mesenchymal transition via the NF-kappaB pathway in papillary thyroid carcinoma. Endocrine 51, 469-477. https://doi.org/10.1007/s12020-015-0714-7
  26. Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein, J., Reinhardt, F., Onder, T.T., Valastyan, S., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates Ecadherin and cancer metastasis. Nat. Cell Biol. 12, 247-256. https://doi.org/10.1038/ncb2024
  27. Nikolova, V., Koo, C.Y., Ibrahim, S.A., Wang, Z., Spillmann, D., Dreier, R., Kelsch, R., Fischgrabe, J., Smollich, M., Rossi, L.H., et al. (2009). Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397-407. https://doi.org/10.1093/carcin/bgp001
  28. Ohkawara, B., Glinka, A., and Niehrs, C. (2011). Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. Dev. Cell 20, 303-314. https://doi.org/10.1016/j.devcel.2011.01.006
  29. Ohori, N.P., Wolfe, J., Carty, S.E., Yip, L., LeBeau, S.O., Berg, A.N., Schoedel, K.E., Nikiforov, Y.E., and Seethala, R.R. (2017). The influence of the noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) resection diagnosis on the falsepositive thyroid cytology rate relates to quality assurance thresholds and the application of NIFTP criteria. Cancer Cytopathol. 125, 692-700. https://doi.org/10.1002/cncy.21892
  30. Okolicsanyi, R.K., Buffiere, A., Jacinto, J.M., Chacon-Cortes, D., Chambers, S.K., Youl, P.H., Haupt, L.M., and Griffiths, L.R. (2015). Association of heparan sulfate proteoglycans SDC1 and SDC4 polymorphisms with breast cancer in an Australian Caucasian population. Tumour Biol. 36, 1731-1738. https://doi.org/10.1007/s13277-014-2774-3
  31. Sheu, S.Y., Grabellus, F., Schwertheim, S., Worm, K., Broecker-Preuss, M., and Schmid, K.W. (2010). Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br. J. Cancer 102, 376-382. https://doi.org/10.1038/sj.bjc.6605493
  32. Skommer, J., Brittain, T., and Raychaudhuri, S. (2010). Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death. Apoptosis 15, 1223-1233. https://doi.org/10.1007/s10495-010-0515-7
  33. Smyth, G.K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3.
  34. Tanaka, H., Kono, E., Tran, C.P., Miyazaki, H., Yamashiro, J., Shimomura, T., Fazli, L., Wada, R., Huang, J., Vessella, R.L., et al. (2010). Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat. Med. 16, 1414-1420. https://doi.org/10.1038/nm.2236
  35. Toba-Ichihashi, Y., Yamaoka, T., Ohmori, T., and Ohba, M. (2016). Up-regulation of Syndecan-4 contributes to TGF-${\beta}$1-induced epithelial to mesenchymal transition in lung adenocarcinoma A549 cells. Biochem. Biophys. Rep. 5, 1-7.
  36. Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J.P., Nevo, J., Gjerdrum, C., Tiron, C., Lorens, J.B., and Ivaska, J. (2011). Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436-1448. https://doi.org/10.1038/onc.2010.509
  37. Wang, X., Lu, X., Geng, Z., Yang, G., and Shi, Y. (2017). LncRNA PTCSC3/miR-574-5p governs cell proliferation and migration of papillary thyroid carcinoma via Wnt/${\beta}$-catenin signaling. J. Cell. Biochem. 118, 4745-4752. https://doi.org/10.1002/jcb.26142
  38. Xing, M., Alzahrani, A.S., Carson, K.A., Viola, D., Elisei, R., Bendlova, B., Yip, L., Mian, C., Vianello, F., Tuttle, R.M., et al. (2013). Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309, 1493-1501. https://doi.org/10.1001/jama.2013.3190
  39. Xu, B., and Ghossein, R. (2018). Evolution of the histologic classification of thyroid neoplasms and its impact on clinical management. Eur. J. Surg. Oncol. 44, 338-347. https://doi.org/10.1016/j.ejso.2017.05.002
  40. Yao, H., Ashihara, E., and Maekawa, T. (2011). Targeting the Wnt/${\beta}$-catenin signaling pathway in human cancers. Expert Opin. Ther. Targets 15, 873-887. https://doi.org/10.1517/14728222.2011.577418
  41. Zhang, J., Gill, A.J., Issacs, J.D., Atmore, B., Johns, A., Delbridge, L.W., Lai, R., and McMullen, T.P. (2012). The Wnt/${\beta}$-catenin pathway drives increased cyclin D1 levels in lymph node metastasis in papillary thyroid cancer. Hum. Pathol. 43, 1044-1050. https://doi.org/10.1016/j.humpath.2011.08.013
  42. Zhang, X., Li, M., Zuo, K., Li, D., Ye, M., Ding, L., Cai, H., Fu, D., Fan, Y., and Lv, Z. (2013). Upregulated miR-155 in papillary thyroid carcinoma promotes tumor growth by targeting APC and activating Wnt/${\beta}$-catenin signaling. J. Clin. Endocrinol. Metabol. 98, E1305-1313. https://doi.org/10.1210/jc.2012-3602
  43. Zhong, H., De Marzo, A.M., Laughner, E., Lim, M., Hilton, D.A., Zagzag, D., Buechler, P., Isaacs, W.B., Semenza, G.L., and Simons, J.W. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830-5835.

Cited by

  1. Identification and analysis of genes associated with papillary thyroid carcinoma by bioinformatics methods vol.39, pp.4, 2018, https://doi.org/10.1042/bsr20190083
  2. LRG-1 enhances the migration of thyroid carcinoma cells through promotion of the epithelial-mesenchymal transition by activating MAPK/p38 signaling vol.41, pp.6, 2018, https://doi.org/10.3892/or.2019.7123
  3. The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review vol.7, pp.None, 2018, https://doi.org/10.3389/fsurg.2020.00043
  4. Identification of two core genes in glioblastomas with different isocitrate dehydrogenase mutation status vol.47, pp.10, 2018, https://doi.org/10.1007/s11033-020-05804-w
  5. A Dynamic Transcriptome Map of Different Tissue Microenvironment Cells Identified During Gastric Cancer Development Using Single-Cell RNA Sequencing vol.12, pp.None, 2018, https://doi.org/10.3389/fimmu.2021.728169
  6. The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells vol.22, pp.23, 2018, https://doi.org/10.3390/ijms222313072