• Title/Summary/Keyword: dry and wet shear strength

Search Result 59, Processing Time 0.025 seconds

Fabrication of Calcined Clay Granule Comprising Zeolite (제올라이트를 함유하는 소성점토의 제조)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Jeong, Soo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.239-246
    • /
    • 2008
  • This research tried to find out the optimum fabrication method of calcined clay granules comprising zeolite. Kaolin clay and natural zeolite powder were used as raw materials of calcined clay, and silica stone powder was used for controlling the porosity of the granules. The granulation was performed with two kinds of granulators: a pan granulator and a high-shear mixer granulator. Various granules were fabricated by the mixing ratios and the rotation speeds of the granulators, and were heated from 400 to $700^{\circ}C$ at $100^{\circ}C$ interval. The crushing strength, pore size distribution, and CEC of the granules were measured. The evaluation method for the resistance of granules to human treading was created and the tests were conducted at dry and wet conditions. The resistance and crushing strength improved in proportion to the rotation speed of the granulator and the heating temperature, but the CEC decreased. The pellet made by the pan granulator did not have the strength against treading upon heating to below $700^{\circ}C$, but the pellet made by the high-shear mixer granulator endured the treading test upon heating to over $500^{\circ}C$

Three-dimensional Slope Stability Analysis of a Dual-lithology Slope (이종지질 분포사면에서의 3차원 사면안정해석)

  • Seo, Yong-Seok;Lee, Kyoung-Mi;Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • Three-dimensional slope stability analysis was applied to a failed dual-lithology slope containing both granite and an andesitic dyke, taking account of the differences in shear strength of the different lithologies. A direct shear test of the soil-rock boundary was performed to examine the shear strength of two different types of failure surfaces within different lithologies, and a laboratory test was performed on an upper, weathered soil layer. The test results indicate that shear strength was lower at the soil-rock boundary than within the weathered soil layer. A representative geological section was subjected to two-dimensional slope stability analysis using a limit equilibrium method to assess whether the distribution of lithologies upon the slope influences the results of stability analysis. The results were then compared with those of three-dimensional slope stability analysis, for which input parameters can be varied according to the distribution of lithologies upon the slope. The three-dimensional analysis yielded safety factors of 1.26 under dry conditions and 0.55 under wet conditions, whereas the two-dimensional analysis yielded unstable safety factors of 0.92 and 0.32, respectively. These findings show that the results of stability analysis are affected by the distribution of different lithologies upon the slope. Given that the studied slope collapsed immediately after rainfall, it is likely that the results of the three-dimensional analysis are more reliable.

Application Technology of Environmental-friendly Starch-based Biobinder and Synthesized Binder as a Substitute for SB Latex (2) - Application of Substitute Binder for Top-coating Layer - (SB latex 대체용 친환경 전분계 바이오바인더 및 합성바인더의 적용 기술 개발 (제2보) - 대체용 바인더의 Top-coating 적용 -)

  • Lee, Yong Kyu;Hong, Seong-Ho;Won, Jong Myoung;Kim, Young-Hun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.141-146
    • /
    • 2015
  • This study was carried out to elucidate the partial substitutability of SB latex with environmental-friendly coating binders for coated paper. Starch-based biobinder, ethylene vinyl acetate and acryl-based binder were evaluated for this purpose. Several combinations of above binders were applied to top layer coating, and properties of coating colors and printability were evaluated. When 20% and 30% of SB latex were substituted by acryl-based synthetic binder, ethylene vinyl acetate and biobinder, the brightness, whiteness and opacity of coated paper were similar to those obtained from SB latex. Ink set and stiffness of coated paper manufactured through 20% and 30% substitution of SB latex by biobinder and EVAc were improved, but dry- and wet-pick strength were decreased. The research works on the improvement of dry- and we-pick strength, mechanical stability and rheological properties at high shear condition should be continued for the commercial application of biobinder, EVAc and acryl-based binder.

An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD (MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구)

  • Chun, Byungsik;Kang, Heejin;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.5-12
    • /
    • 2007
  • Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The sliding of cut slope frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. The study in this paper shows that mudstone having enough strength in a boring stage has lost the strength after installing PRD (percussion rotary drill) steel pipe pile inducing an insufficient bearing capacity. Field test has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, confirmed by the static load test.

  • PDF

Characteristics of Shear Strength for Recycled Fine Aggregates Mixed Soil (순환잔골재 혼합토의 전단강도 특성)

  • Im, Weulsook;Kwon, Jeunghoon;Kim, Minwook;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.47-55
    • /
    • 2010
  • The recycled fine aggregates were mixed with weathered granite soils typically used for fill materials and tested engineering properties, physical properties, and compaction characteristics according to the mixing ratio of the mixed soils. The results of this study were as follows. For the results of A-type compaction test, the recycled fine aggregates showed low effects compared to the weathered soils, but the mixed soils which were mixed with the weathered granite soils and the recycled fine aggregates showed good compaction effects. Especially, the mixing ratio of 70:30 by weight showed for maximum compaction result. From the results of the direct shear test, the cohesion was ince csed according to proportion of the weathered granite soils. The weathered granite soils neared the optimum moisture content showed for maximum shear strength paramcoers, while the cohesion of the mixed soil was relatively ince csed in the wet side of the optimum moisture content. This trend was seemed to remained cence composition in the recycled fine aggregates. The internal friction angle of the recycled fine aggregates and the mixed soils showed maximum value near dry side of the optimum moisture contents. And the internal friction angles of the mixed soils were increased according to higher proportion of the recycled fine aggregates.

Effects of Ozonized Soybean Oil to Changes of Chemical Structures and Bond Strength of pMD (오존산화 처리한 콩기름을 이용한 변성 pMDI 접착제의 화학 구조 및 접착력 변화)

  • You, Young Sam;Lee, Hyun Jong;Lee, Taek Jun;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • The research attempted to develop an eco-friendly wood adhesive based on vegetable oil (soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The soybean oils (SBO) were reacted with $O_3$ at the rate of 7.13 g/h for different times, 15 minutes, 30 minutes, 60 minutes, and 120 minutes. Modified chemical structure of the ozonized SBOs were examined by Fourier transform Infrared (FT-IR) spectrum. The FT-IR spectrum of SBO had an absorbance peak at $3010cm^{-1}$ that is the characteristic peak of the unsaturated double bonds. As ozone treatment time increased, the peak of the double bond was disappeared and aldehyde or carboxyl peak appeared at $1700cm^{-1}$. The dry, wet, and cyclic boiling bond strengths of the ozonized SBO mixed with polymeric diphenylmethane-4, 4-diisocyanate (pMDI) were also investigated. In the dry shear test, all strengths met constantly the standard requirement of $7.0kgf/cm^2$ (KS F3101 2006). The bond strengths gradually increased with increasing ozone treatment time. The highest strength showed at 60 minutes ozone treatment and decreased values at 120 minutes. In the cyclic boiling shear test, 30, 60 and 120 minutes exceeded the standard requirement.

THE EFFECTS OF SURFACE CONTAMINATION BY HEMOSTATIC AGENTS ON THE SHEAR BOND STRENGTH OF COMPOMER (지혈제 오염이 콤포머의 전단결합강도에 미치는 영향)

  • Heo, Jeong-Moo;Kwak, Ju-Seog;Lee, Hwang;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • One of the latest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not dry but left moist before application of the bonding primer Ideally the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically, contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during cavity preparation. The aim of this study was to evaluate the effect of contamination by hemostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were removed soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive papers on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows : Group 1: Dentin surface was not etched and not contaminated by hemostatic agents. Group 2: Dentin surface was not etched but was contaminated by Astringedent$^{\circledR}$(Ultradent product Inc., Utah, U.S.A.) Group 3: Dentin surface was not etched but was contaminated by Bosmin$^{\circledR}$(Jeil Pharm, Korea.). Group 4: Dentin surface was not etched but was contaminated by Epri-dent$^{\circledR}$(Epr Industries, NJ, U.S.A.). Group 5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6: Dentin sorface was etched and contaminated by Astringedent$^{\circledR}$. Group 7 : Dentin surface was etched and contaminated by Bosmin$^{\circledR}$. Group 8: Dentin surface was etched and contaminated by Epri-dent$^{\circledR}$. Group 9: Dentin surface was contaminated by Astringedent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 10: Dentin surface was contaminated by Bosmin$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 11 : Dentin surface was contaminated by Epri-dent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. After surface conditioning, F2000$^{\circledR}$ was applicated on the conditoned dentin surface The teeth were thermocycled in distilled water at 5$^{\circ}C$ and 55$^{\circ}C$ for 1,000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the knife-edge shearing rod of the Universal Testing Machine(Zwick Z020, Zwick Co., Germany) running at a cross head speed or 1.0 mm/min. Group 2 showed significant decrease in shear bond strength compared with group 1 and group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

Performance of steel beams strengthened with pultruded CFRP plate under various exposures

  • Gholami, M.;Sam, A.R. Mohd;Marsono, A.K.;Tahir, M.M.;Faridmehr, I.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.999-1022
    • /
    • 2016
  • The use of Carbon Fiber Reinforced Polymer (CFRP) to strengthen steel structures has attracted the attention of researchers greatly. Previous studies demonstrated bonding of CFRP plates to the steel sections has been a successful method to increase the mechanical properties. However, the main limitation to popular use of steel/CFRP strengthening system is the concern on durability of bonding between steel and CFRP in various environmental conditions. The paper evaluates the performance of I-section steel beams strengthened with pultruded CFRP plate on the bottom flange after exposure to diverse conditions including natural tropical climate, wet/dry cycles, plain water, salt water and acidic solution. Four-point bending tests were performed at specific intervals and the mechanical properties were compared to the control beam. Besides, the ductility of the strengthened beams and distribution of shear stress in adhesive layer were investigated thoroughly. The study found the adhesive layer was the critical part and the performance of the system related directly to its behavior. The highest strength degradation was observed for the beams immersed in salt water around 18% after 8 months exposure. Besides, the ductility of all strengthened beams increased after exposure. A theoretical procedure was employed to model the degradation of epoxy adhesive.

Effects of Adhesion Conditions on Bonding Strength of Pitch Pine Woods for Glued-Laminated Wood (리기다소나무 판재(板材)의 접착조건(接着條件)이 집성재(集成材)의 접착성능(接着性能)에 미치는 영향(影響))

  • Park, Sang-Bum;Kong, Young-To;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.48-53
    • /
    • 1988
  • This study was carried out to investigate the effects of pressing time and spreading amount, moisture content, gap-distance with butt to butt joint and adhesives on bonding strength in manufacturing the laminated wood with Pitch pine (Pinus rigida). The results obtained were as follows: 1) The pressing time of 12 hours, 10 kilogram per square centimeter of pressure and 200 gram per square meter of spreading amount were required to reach over 50 kilogram per square centimeter (block shear strength) in manufacturing the laminated wood by aqueous vinyl urethane adhesive. 2) The bonding strength decreased with the increase of moisture content of wood. The block shear strength, however, showed over 100 kilogram per square centimeter when the strength test was carried out after air-drying the laminated wood in high moisture content (30-70%). 3) Regardless of direction of load, every flexural property decreased with the increase of gap-distance with butt to butt joint. However, little of every flexural property was changed at 0.5 millimeter of joint-gap distance. The flexural property of vertically laminated wood (perpendicular to glue line to load direction: 1) showed more than that of horizontally laminated wood (parallel to glue line to load direction: //). 4) Among five adhesives used at this experiment, the bonding strength of aqueous vinyl urethane adhesive was the highest in dry bond and wet tests.

  • PDF

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF