• Title/Summary/Keyword: drug carriers

Search Result 143, Processing Time 0.03 seconds

Enhanced dissolution rates of piroxicam from the ground mixtures with chitin or chitosan

  • Koh, Ik-Bae;Shin, Sang-Chul;Lee, Yong-Bok
    • Archives of Pharmacal Research
    • /
    • v.9 no.1
    • /
    • pp.55-61
    • /
    • 1986
  • To increase the dissolution rate of piroxicam, chitin and chitosan which are widely occurring biodegradable natural materials were used as drug carriers. The ground mixtures of piroxicam with chitin or chitosan were prepared by grinding in a ball mill. The dissolution rates of piroxicam from the ground mixtures were enhanced markedly than that from the physical mixtures or from intact piroxicam. The X-ray diffraction peaks disappeared in the ground mixture indicating the production of the amorphous form. The comparison of infrared spectra of the physical mixture and the ground minture showed an interaction such as association between the functional groups of piroxicam and chitin or chitosan in the molecular level. The weight losses in TGA curves shoed all the same patterns. However, in the ground mixture by DTA curve, the undothermic peak due to the fusion of piroxicam was disappeared indicating the different thermal property.

  • PDF

Polyvinyl butyral DMN-conjugates for the controlled release of singlet oxygen in medical and antimicrobial applications

  • Posavec, Damir;Muller, Rainer;Bogner, Udo;Bernhardt, Gunther;Knor, Gunther
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • Covalent attachment of 1, 4-dimethylnaphthalene (DMN) based endoperoxide forming subunits to a polyvinyl butyral (PVB) backbone has been achieved. The functionalized polymer materials prepared and characterized here can serve as biocompatible carrier systems for studying cellular uptake, intermediate storage and delayed release of singlet oxygen, which opens up new doors for optimizing a variety of medical applications of photogenerated DMN-endoperoxides such as antiviral, antibacterial, antiplasmodial and antitumor activity.

Cohort Analysis of Incidence/Mortality of Liver Cancer in Japan through Logistic Curve Fitting

  • Okamoto, Etsuji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5891-5893
    • /
    • 2013
  • Incidence/mortality of liver cancer follow logistic curves because there is a limit reflecting the prevalence of hepatitis virus carriers in the cohort. The author fitted logistic curves to incidence/mortality data covering the nine five-year cohorts born in 1911-1955 of both sexes. Goodness-of-fit of logistic curves was sufficiently precise to be used for future predictions. Younger cohorts born in 1936 or later were predicted to show constant decline in incidence/mortality in the future. The male cohort born in 1931-35 showed an elevated incidence/mortality of liver cancer early in their lives supporting the previous claim that this particular cohort had suffered massive HCV infection due to nation-wide drug abuse in the 1950s. Declining case-fatality observed in younger cohorts suggested improved treatment of liver cancer. This study demonstrated that incidence/mortality of liver cancer follow logistic curves and fitted logistic formulae can be used for future prediction. Given the predicted decline of incidence/mortality in younger cohorts, liver cancer is likely to be lost to history in the not-so-distant future.

The Effect on the Dissolution Rate of Sulfamerazine from Sugar Glass Dispersion System (Sulfamerazine-Sugar Glass Dispersion의 용출속도에 관한 연구)

  • Ku, Young-Soon;Sung, Kyung-Soo
    • YAKHAK HOEJI
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 1990
  • Three sugar glass dispersions of sulfamerazine were prepared using dextrose, galactose and sucrose as the carriers, with the ratio of the drug to the carrier was 1:9. The chemical stability of sulfamerazine in the glass dispersion system was studied using TLC. TLC revealed no additional spot and there was good correspondence with the Sulfamerazine itself. While time required to dissolve 50%($T_{50%}$) of sulfamerazine powder was 390 min that of dextrose glass dispersion system was 1.5 min. and galactose system was 4.0 min. in distilled water. 23) $T_{50%}$ of physical mixture with dextrose, galactose and sucrose were 26.4 min., 26.5 min., and 26.0 min. respectively in distilled water. $T_{50%}$ of control was 54 min. and those of all of the glass dispersion systems were within 1 min. in 0.1N HCl. The dissolution rates of sulfamerazine from sugar glass dispersion system in distilled water was greater than that in 0.1N HCl.

  • PDF

Clinical Appliance of Structure-Function Studies of Salivary Macromolecules (타액 단백질의 기능 및 구조 연구의 임상적 적용)

  • 고홍섭
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.3
    • /
    • pp.241-247
    • /
    • 1998
  • Salivary research is at a critical crossroads regarding the clinical application of the basic knowledge. The purpose of this article is to introduce the current progress on salivary research to Korean dental scientists. The accumulated results based on advance technologies such as protein chemistry, molecular biology, and structural biology have showed that salivary macromolecules need structural requirements for proper function. Currently, several concepts or principles, which can be applied to salivary macromolecules, have been suggested. These include the role of molecules' conformation on biological activity, their multifunctional nature, their redundancy of function, their amphifunctional properties, and the potential importance of complexing between molecules. These concepts and the information available will help the development of saliva substitutes, the design of drug carriers and chimera molecules with enhanced function and the development of gene therapy protocols. These approaches will alleviate or restore lost salivary function and can be used to treat various kinds of oral and systemic diseases.

  • PDF

Synthesis of Various Polymeric Prodrugs of Ibuprofen with PEG and Its Derivative as Polymeric Carriers

  • Lee, Chan-Woo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by the nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt; PN (Pluronic) was also used in place of PEG. All the bromo-terminated PEGs and PN were obtained in high yield. Conversions of the terminal hydroxyl groups to bromo-termini were quantitative, as were the drug conjugation processes. The Ι$_1$$_3$values obtained from solutions of the ibuprofen-conjugated prodrugs are summarized in relation to those of ibuprofen in water and in aqueous solutions of the original PEG, PN, and several ordinary surfactants. We believe that the fully hydrophilic PEG is completely hydrated and forms no hydrophobic pocket by segment aggregation. These results indicate that the probe environment is significantly hydrophobic, particularly in the solution of prodrug PN, for which the ratio is similar to that obtained from typical micelles of surfactants. The results suggest, therefore, that the present synthetic method is very useful for preparing PEG-based prodrugs from pharmaceuticals having carboxyl functionalities.

The Use of Pistachio Pollen for the Production of Nanostructured Porous Nickel Oxide

  • Atalay, F.E.;Yigit, E.;Biber, Z.S.;Kaya, H.
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850143.1-1850143.9
    • /
    • 2018
  • Natural biotemplates - such as bacteria, fungi and viruses - are used in nanostructured metal oxide production. The pollen can be found abundantly in nature, and their microcapsules can be easily isolated from the pollen by chemical treatments. To date, pollen microcapsules are mostly used as drug carriers and catalytic agent templates. In the present study, nanoporous-structured nickel oxide is produced using Pistachio pollen microcapsules. The raw pollen, chemically treated pollen and metal-coated pollen were characterized using scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. The natural Pistachio pollen which were procured from Gaziantep, Turkey, are spherical, with a diameter of approximately $23{\mu}m$. The maximum surface area obtained for nickel oxide-coated microcapsules is $228.82m^2/g$. This result shows that Pistachio pollen are an excellent candidate for the production of porous nanostructured materials for supercapacitor electrodes.

Toxicity of nanoparticles_ challenges and opportunities

  • Ramanathan, Amall
    • Applied Microscopy
    • /
    • v.49
    • /
    • pp.2.1-2.11
    • /
    • 2019
  • Nanomaterials (NMs) find widespread use in different industries that range from agriculture, food, medicine, pharmaceuticals, and electronics to cosmetics. It is the exceptional properties of these materials at the nanoscale, which make them successful as growth promoters, drug carriers, catalysts, filters and fillers, but a price must be paid via the potential toxity of these materials. The harmful effects of nanoparticles (NPs) to environment, human and animal health needs to be investigated and critically examined, to find appropriate solutions and lower the risks involved in the manufacture and use of these exotic materials. The vast number and complex interaction of NM/NPs with different biological systems implies that there is no universal toxicity mechanism or assessment method. The various challenges need to be overcome and a number of research studies have been conducted during the past decade on different NMs to explore the possible mechanisms of uptake, concentrations/dosage and toxicity levels. This review article examines critically the recent reports in this field to summarize and present opportunities for safer design using case studies from published literature.

Current research trends on starch nanoparticles (SNPs) (녹말 나노 입자의 연구 현황)

  • Oh, Seon-Min;Baik, Moo-Yeol
    • Food Science and Industry
    • /
    • v.52 no.4
    • /
    • pp.346-357
    • /
    • 2019
  • In recent years, starch nanoparticles (SNPs) have been received much attention due to their unique characteristics different from native starch. Also, SNPs have economic and environmental advantages because they are prepared from starch, a cheap and safe natural polymer. It can be used in various industrial applications such as food additives, drug carriers, etc. SNPs have been prepared using different methods and their physiochemical, functional properties and possible industrial applications have been reported. Based on these studies, SNPs are expected to be the promising food materials and expand their utilization in many industries in the future. This review covered the overall researches on SNPs, including preparation, physicochemical and functional properties, and discussed their current and future applications including resistant starch materials.

Evaluation of the Anti-Tumor Effects of Paclitaxel-Encapsulated pH-Sensitive Micelles

  • Han, Jong-Kwon;Kim, Min-Sang;Lee, Doo-Sung;Kim, Yoo-Shin;Park, Rang-Woon;Kim, Kwang-Meyung;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.99-103
    • /
    • 2009
  • We evaluated the efficacy of pH-sensitive micelles, formed by methoxy poly(ethylene glycol)-b-poly($\beta$)-amino ester) (PEG-PAE), as carriers for paclitaxel (PIX), a drug currently used to treat various cancers. PTX was successful encapsulated by a film hydration method. Micelles encapsulated more than 70% of the PTX and the size of the PTX-encapsulated micelles (PTX-PM) was less than 150 nm. In vitro experiments indicated that the micelles were unstable below pH 6.5. After encapsulation of PTX within the micelles, dynamic light scattering (DLS) studies indicated that low pH had a similar demicellization effect. An in vitro release study indicated that PTX was slowly released at pH 7.4 (normal body conditions) but rapidly released under weakly acidic conditions (pH 6.0). We demonstrated the safety of micelles from in vitro cytotoxicity tests on HeLa cells and the in vivo anti-tumor activity of PTX-PM in B16F 10 tumor-bearing mice. We concluded that these pH-sensitive micelles have potential as carriers for anti-cancer drugs.