DOI QR코드

DOI QR Code

The Use of Pistachio Pollen for the Production of Nanostructured Porous Nickel Oxide

  • Atalay, F.E. (Department of Physics, Science and Art Faculty Inonu University) ;
  • Yigit, E. (Department of Biology, Science and Art Faculty Inonu University) ;
  • Biber, Z.S. (Department of Physics, Science and Art Faculty Inonu University) ;
  • Kaya, H. (Department of Physics, Science and Art Faculty Inonu University)
  • Received : 2018.07.16
  • Accepted : 2018.11.07
  • Published : 2018.12.31

Abstract

Natural biotemplates - such as bacteria, fungi and viruses - are used in nanostructured metal oxide production. The pollen can be found abundantly in nature, and their microcapsules can be easily isolated from the pollen by chemical treatments. To date, pollen microcapsules are mostly used as drug carriers and catalytic agent templates. In the present study, nanoporous-structured nickel oxide is produced using Pistachio pollen microcapsules. The raw pollen, chemically treated pollen and metal-coated pollen were characterized using scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. The natural Pistachio pollen which were procured from Gaziantep, Turkey, are spherical, with a diameter of approximately $23{\mu}m$. The maximum surface area obtained for nickel oxide-coated microcapsules is $228.82m^2/g$. This result shows that Pistachio pollen are an excellent candidate for the production of porous nanostructured materials for supercapacitor electrodes.

Keywords

Acknowledgement

Supported by : Inonu University

References

  1. S. Stankic, S. Suman, F. Haque and J. Vidic, J. Nanobiotechnol. 14, 1 (2016), https://dx.doi.org/10.1186/s12951-016-0225-6.
  2. R. A. Farrell, N. Petkov, M. A. Morris and J. D. Holmes, J. Colloid Inter. Sci. 349, 449 (2010), https://dx.doi.org/10.1016/j.jcis.2010.04.041.
  3. Y. Xu, L. Fei, E. Fu, B. Yuan, J. Hill, Y. Chen, S. Deng, P. Andersen, Y. Wang and H. Luo, J. Power Sources 242, 604 (2013), https://dx.doi.org/10.1016/j.jpowsour.2013.05.116.
  4. F. E. Atalay, E. Aydogmus, H. Yigit, D. Avcu, H. Kaya and S. Atalay, Acta Phys. Pol. A 125, 224 (2014), https://dx.doi.org/10.12693/APhysPolA.125.224.
  5. S. S. Elnashaie, F. Danafar and H. H. Rafsanjani, From nanotechnology to nanoengineering, in Nanotechnology for Chemical Engineers, eds. S. S. Elnashaie, F. Danafar and H. H. Rafsanjani (Springer Singapore, Singapore, 2015), pp. 79-178, https://dx.doi.org/10.1007/978-981-287-496-2 2.
  6. U.S. Department of Energy, Office of Basic Energy Sciences, The Scale of Things-Nanometers and More, https://static.nbclearn.com/¯les/nbcarchives/site/pdf/53030.pdf. (accessed on 13 July 2018).
  7. Z. Xia, Photonic materials, in Biomimetic Principles and Design of Advanced Engineering Materials, ed. Z. Xia (John Wiley & Sons, Ltd., United Kingdom, 2016), pp. 210-236.
  8. Y. Zhao, Z. Xie, H. Gu, C. Zhu and Z. Gu, Chem. Soc. Rev. 41, 3297 (2012), https://dx.doi.org/10.1039/C2CS15267C.
  9. D. Yan, H. Zhang, L. Chen, G. Zhu, S. Li, H. Xu and A. Yu, ACS App. Mater. Inter. 6, 15632 (2014), https://dx.doi.org/10.1021/am5044449.
  10. K. Vithiya and S. Sen, Int. J. Pharm. Sci. Res. 2, 2781 (2011), http://dx.doi.org/10.13040/IJPSR.0975-8232.
  11. F. E. Atalay, D. Asma, H. Kaya and E. Ozbey, Mater. Sci. Semicond. Process. 38, 314 (2015), http://dx.doi.org/10.1016/j.mssp.2014.12.002.
  12. F. E. Atalay, D. Asma, H. Kaya, A. Bingol and P. Yaya, Nanomater. Nanotechnol. 6, 1 (2016), doi: http://dx.doi.org/10.5772/63569.
  13. X. Li, H. Xu, Z.-S. Chen and G. Chen, J. Nanomater. 2011, 1 (2011), http://dx.doi.org/10.1155/2011/270974.
  14. H. M. Magdi and B. Bhushan, Microsyst. Technol. 21, 2279 (2015), https://dx.doi.org/10.1007/s00542-015-2666-5.
  15. H.-W. Shim, A.-H. Lim, J.-C. Kim, E. Jang, S.-D. Seo, G.-H. Lee, T. D. Kim and D.-W. Kim, Sci. Rep. 3, 2325 (2013), https://dx.doi.org/10.1038/srep02325.
  16. D. Sharma, S. Kanchi and K. Bisetty, Arab. J. Chem. (2015), https://dx.doi.org/10.1016/j.arabjc.2015. 11.002, in press.
  17. A. K. F. Dyab, E. M. Abdallah, S. A. Ahmed and M. M. Rabee, J. Encap. Adsorp. Sci. 6, 109 (2016), http://dx.doi.org10.4236/jeas.2016.64009.
  18. R. C. Mundargi, M. G. Potroz, J. H. Park, J. Seo, E.-L. Tan, J. H. Lee and N.-J. Cho, Sci. Rep. 6, 19960 (2016), https://dx.doi.org/10.1038/srep 19960.
  19. S. Belhadj, A. Derridj, L. Civeyrel, C. Gers, T. Aigouy, T. Otto and T. Gauquelin, Grana 46, 148 (2007), https://dx.doi.org/10.1080/00173130701520310.
  20. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing and K. K. Unger, Pure Appl. Chem. 66, 1739 (1994). https://doi.org/10.1351/pac199466081739
  21. M. Aghazadeh, M. Ghaemi, B. Sabour and S. Dalvand, J. Solid State Electrochem. 18, 1569 (2014), https://dx.doi.org/10.1007/s10008-014-2381-7.
  22. Q. Guo, M. Zhang, S. Liu, G. Zhou, X. Li, H. Hou and L. Wang, Anal. Methods 8, 8227 (2016), https://dx.doi.org/10.1039/C6AY02299E.