DOI QR코드

DOI QR Code

Toxicity of nanoparticles_ challenges and opportunities

  • Received : 2019.01.10
  • Accepted : 2019.03.19
  • Published : 2019.04.29

Abstract

Nanomaterials (NMs) find widespread use in different industries that range from agriculture, food, medicine, pharmaceuticals, and electronics to cosmetics. It is the exceptional properties of these materials at the nanoscale, which make them successful as growth promoters, drug carriers, catalysts, filters and fillers, but a price must be paid via the potential toxity of these materials. The harmful effects of nanoparticles (NPs) to environment, human and animal health needs to be investigated and critically examined, to find appropriate solutions and lower the risks involved in the manufacture and use of these exotic materials. The vast number and complex interaction of NM/NPs with different biological systems implies that there is no universal toxicity mechanism or assessment method. The various challenges need to be overcome and a number of research studies have been conducted during the past decade on different NMs to explore the possible mechanisms of uptake, concentrations/dosage and toxicity levels. This review article examines critically the recent reports in this field to summarize and present opportunities for safer design using case studies from published literature.

Keywords

References

  1. L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527-3532 (2006) https://doi.org/10.1016/j.watres.2006.08.004
  2. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17-28 (2016) https://doi.org/10.1016/j.jare.2015.02.007
  3. M. Allegri, M.G. Bianchi, M. Chiu, J. Varet, A.L. Costa, S. Ortelli, M. Blosi, O. Bussolati, C.A. Poland, E. Bergamaschi, Shape-related toxicity of titanium dioxide Nanofibres. PLoS One 11(3), e0151365 (2016) https://doi.org/10.1371/journal.pone.0151365
  4. J.H.E. Arts et al., A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. 71(2), S1-S27 (2015) https://doi.org/10.1016/j.yrtph.2015.03.007
  5. P.V. Asharani, Y.L. Wu, Z. Gong, S. Valiyaveettil, Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 19 (2008). https://doi.org/10.1088/0957-4484/19/25/255102
  6. L. Belyanskaya, S. Weigel, C. Hirsch, U. Tobler, H. Krug, P. Wick, Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30, 702-711 (2009) https://doi.org/10.1016/j.neuro.2009.05.005
  7. J. Beranova, G. Seydlova, H. Kozak, O. Benada, R. Fiser, A. Artemenko, I. Konopasek, A. Kromka, Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells. FEMS Microbiol. Lett. 351(2), 179-186 (2014) https://doi.org/10.1111/1574-6968.12373
  8. J.S. Bozich, S.E. Lohse, M.D. Torelli, C.J. Murphy, R.J. Hamers, R.D. Klaper, Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ Sci: Nano. 1, 260-270 (2014) https://doi.org/10.1039/C4EN00006D
  9. M. Cobaleda-Siles, A.P. Guillamon, C. Delpivo, S. Vazquez-Campos, V.F. Puntes, Safer by design strategies. IOP Conf. Ser: J. Phys. (2017). https://doi.org/10.1088/1742-6596/838/1/012016
  10. S.A. Dahoumane, E.K. Wujcik, C. Jeffryes, Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzym. Microb. Technol. 95, 13-27 (2016) https://doi.org/10.1016/j.enzmictec.2016.06.008
  11. J. Duan et al., Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology 12, 470-484 (2018) https://doi.org/10.1080/17435390.2018.1461267
  12. A. Erdem, D. Metzler, D.K. Cha, C.P. Huang, The short-term toxic effects of $TiO_2$ nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation. Environ. Sci. Pollut. Res. Int. 22(22), 17917-17924 (2015). https://doi.org/10.1007/s11356-015-5018-1
  13. V.E. Fako, D.Y. Furgeson, Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliver Rev. 61, 478-486 (2009) https://doi.org/10.1016/j.addr.2009.03.008
  14. B. Fubini, M. Ghiazza, I. Fenoglio, Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4, 347-363 (2010) https://doi.org/10.3109/17435390.2010.509519
  15. M.A. Gatoo et al., Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/498420
  16. S. George et al., Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4, 15-29 (2010) https://doi.org/10.1021/nn901503q
  17. J. Geys et al., Acute toxicity and Prothrombotic effects of quantum dots: Impact of surface charge. Environ. Health Perspect. 116, 1607-1613 (2008) https://doi.org/10.1289/ehp.11566
  18. L.M. Gilbertson et al., Toward safer multi-walled carbon nanotube design: Establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology 10(1), 10-19 (2016)
  19. H. Godwin et al., Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9(4), 3409-3417 (2015) https://doi.org/10.1021/acsnano.5b00941
  20. R.J. Griffitt, J. Luo, J. Gao, J.C. Bonzongo, D.S. Barber, Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 27(9), 1972-1978 (2008) https://doi.org/10.1897/08-002.1
  21. R.D. Handy, G. Al-Bairuty, A. Al-Jubory, C.S. Ramsden, D. Boyle, B.J. Shaw, T.B. Henry, Effects of manufactured nanomaterials on fishes: A target organ and body systems physiology approach. J. Fish Biol. 79(4), 821-853 (2011) https://doi.org/10.1111/j.1095-8649.2011.03080.x
  22. R.D. Handy et al., Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: What have we learnt so far? Ecotoxicology. 21(4), 933-972 (2012) https://doi.org/10.1007/s10646-012-0862-y
  23. S.L. Harper, J.L. Carriere, J.M. Miller, J.E. Hutchison, B.L.S. Maddux, R.L. Tanguay, Systematic evaluation of nanomaterial toxicity: Utility of standardized materials and rapid assays. ACS Nano 5, 4688-4697 (2011) https://doi.org/10.1021/nn200546k
  24. T.S. Hauck, A.A. Ghazani, W.C.W. Chan, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small. 4, 153 (2008) https://doi.org/10.1002/smll.200700217
  25. O.D. Hendrickson, I.V. Safenkova, A.V. Zherdev, B.B. Dzantiev, V.O. Popov, Methods of detection and identification of manufactured nanoparticles. Biofizika. 56(6), 965-994 (2011)
  26. G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, X. Guo, Cytotoxicity of carbon nanomaterials: Single-Wall nanotube, Multi-Wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378-1383 (2005) https://doi.org/10.1021/es048729l
  27. M. Kitching, M. Ramani, E. Marsili, Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microb. Biotechnol. 8, 904-917 (2015) https://doi.org/10.1111/1751-7915.12151
  28. P. Korshed, L. Li, Z. Liu, T. Wang, The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One 11(8), e0160078 (2016) https://doi.org/10.1371/journal.pone.0160078
  29. J. Kostal, A. Voutchkova-Kostal, P.T. Anastas, J.B. Zimmerman, Identifying and designing chemicals with minimal acute aquatic toxicity. Proc. Natl. Acad. Sci. 112(20), 6289-6294 (2015) https://doi.org/10.1073/pnas.1314991111
  30. A. Kraegeloh, B. Suarez-Merino, T. Sluijters, C. Micheletti, Implementation of safe-by-Design for Nanomaterial Development and Safe Innovation: Why we need a comprehensive approach. Nanomaterials (Basel). 8(4), 239 (2018) https://doi.org/10.3390/nano8040239
  31. W.G. Kreyling, M. Semmler-Behnke, W. Moller, Ultrafine particle-lung interactions: Does size matter? J. Aerosol Med. 19(1), 74-83 (2006) https://doi.org/10.1089/jam.2006.19.74
  32. J.S. Lee, C.-H. Tung, Enhancing the cellular delivery of nanoparticles using lipooligoarginine peptides. Adv. Funct. Mater. 22, 4924-4930 (2012) https://doi.org/10.1002/adfm.201201345
  33. K.J. Lee, L.M. Browning, P.D. Nallathamby, X.H. Xu, Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem. Res. Toxicol. 26, 904-917 (2013) https://doi.org/10.1021/tx400087d
  34. R. Li et al., Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle Hazard and provide opportunities for safer design. ACS Nano 8(2), 1771-1783 (2014) https://doi.org/10.1021/nn406166n
  35. X. Li et al., Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials 96, 24-32 (2016) https://doi.org/10.1016/j.biomaterials.2016.04.014
  36. Y. Li, Y. Liu, Y. Fu, T. Wei, L. Le Guyader, G. Gao, R. Liu, Y. Chang, C. Chen, The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-Beta signaling pathways. Biomaterials 33, 402-411 (2012) https://doi.org/10.1016/j.biomaterials.2011.09.091
  37. Y. Liu et al., Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46(3), 702-713 (2013) https://doi.org/10.1021/ar300028m
  38. S.B. Lovern, J.R. Strickler, R. Klaper, Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, $nano-C_{60}$, and $C_{60}H_xC_{70}H_x$). Environ Sci Technol. 41(12), 4465-4470 (2007) https://doi.org/10.1021/es062146p
  39. M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Green biosynthesis and characterization of magnetic iron oxide ($Fe_3O_4$) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 18, 5954-5964 (2013) https://doi.org/10.3390/molecules18055954
  40. P. Marckmann et al., Nephrogenic systemic fibrosis: Suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J. Am. Soc. Nephrol. 17(9), 2359-2362 (2006) 50 https://doi.org/10.1681/ASN.2006060601
  41. J. Me'rian, J. Gravier, F. Navarro, I. Texier, Fluorescent nanoprobes dedicated to in vivo imaging: From preclinical validations to clinical translation. Molecules. 17, 5564-5591 (2012) https://doi.org/10.3390/molecules17055564
  42. Moore M N, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? DOI: https://doi.org/10.1016/j.envint.2006.06.014
  43. T. Mustafa, Y. Zhang, F. Watanabe, et al., Iron oxide nanoparticle-based radio-frequency thermotherapy for human breast adenocarcinoma cancer cells. Biomater Sci 1, 870-880 (2013) https://doi.org/10.1039/c3bm60015g
  44. N.N.I. National Nanotechnology Initiative Environmental, Health, and Safety Reserach strategy. National Science and technology council committee on technology and the subcommittee on nanoscale science, engineering, and Technology. (2011). https://www.nano.gov/sites/default/files/pub_resource/nni_2011_ehs_research_strategy.pdf
  45. N.R.C, A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials (National Research Council of The National Academies, Washington, D.C, 2012)
  46. H. Naatz et al., Safe-by-design of CuO nanoparticles via Fe-doping, cu-O bond lengths variation, and biological assessment in cells and zebrafish embryos. ACS Nano 11(1), 501-515 (2017) https://doi.org/10.1021/acsnano.6b06495
  47. D.A. Nedosekin, S. Foster, Z.A. Nima, A.S. Biris, E.I. Galanzha, V.P. Zharov, Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells. Drug Metab. Rev. (2015). https://doi.org/10.3109/03602532.2015.1058818
  48. A. Nel, T. Xia, H. Meng, X. Wang, S. Lin, Z. Ji, H. Zhang, Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 46, 607-621 (2013) https://doi.org/10.1021/ar300022h
  49. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114, 343-347 (2006) https://doi.org/10.1016/j.jconrel.2006.06.017
  50. D.A. Notter, D.M. Mitrano, B. Nowack, Are nanosized or dissolved metals more toxic in the environment? A meta-analysis. Environ. Toxicol. Chem. 33(12), 2733-2739 (2014) https://doi.org/10.1002/etc.2732
  51. A. Ostrowski et al., Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol. 6, 263-280 (2015) https://doi.org/10.3762/bjnano.6.25
  52. J. Palomaki, E. Valimaki, J. Sund, M. Vippola, P. Clausen, K. Jensen, K. Savolainen, S. Matikainen, H. Alenius, Long, needle-like carbon nanotubes and Asbestos activate the NLRP3 Inflammasome through a similar mechanism. ACS Nano 5, 6861-6870 (2011) https://doi.org/10.1021/nn200595c
  53. H.K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, A.K. Dasgupta, Cell-selective response to gold nanoparticles. Nanomedicine. 3, 111-119 (2007) https://doi.org/10.1016/j.nano.2007.03.005
  54. E.J. Petersen, T.B. Henry, J. Zhao, R.I. MacCuspie, T.L. Kirschling, M.A. Dobrovolskaia, V. Hackley, B. Xing, J.C. White, Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ. Sci. Technol. 48, 4226-4246 (2014) https://doi.org/10.1021/es4052999
  55. C. Poland, R. Duffin, I. Kinloch, A. Maynard, W. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show Asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423-428 (2008) https://doi.org/10.1038/nnano.2008.111
  56. A. Porter, M. Gass, J. Bendall, K. Muller, A. Goode, J. Skepper, P. Midgley, M. Welland, Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3, 1485-1492 (2009) https://doi.org/10.1021/nn900416z
  57. K. Pulskamp, S. Diabate, H. Krug, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58-74 (2007) https://doi.org/10.1016/j.toxlet.2006.11.001
  58. Ramanathan A A and Aqra M A. An overview of the Green Road to the Synthesis of Nanoparticles. DOI: https://doi.org/10.9734/JMSRR/2019/46014
  59. L.Y. Rizzo, S.K. Golombek, M.E. Mertens, Y. Pan, D. Laaf, J. Broda, J. Jayapaul, D. Mockel, V. Subr, F. Kiessling, T. Lammers, In vivo nanotoxicity testing using the zebrafish embryo assay. J. Mater. Chem. B 1, 3918-3925 (2013) https://doi.org/10.1039/c3tb20528b
  60. Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji, Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1, 176-182 (2005) https://doi.org/10.1039/b502429c
  61. J.J. Scott-Fordsmand et al., A unified framework for nanosafety is needed. Nano Today 9(5), 546-549 (2014) https://doi.org/10.1016/j.nantod.2014.07.001
  62. H. Selck et al., Nanomaterials in the aquatic environment: An EU-USA perspective on the status of ecotoxicity testing, research priorities and challenges ahead. Environ. Toxicol. Chem. 35(5), 1055-1067 (2016). https://doi.org/10.1002/etc.3385
  63. G.A. Sotiriou et al., Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential. Environ. Sci.: Nano. 1, 144-153 (2014) https://doi.org/10.1039/c3en00062a
  64. V. Stone et al., ITS-NANO-Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part. Fibre Toxicol. 11(1), 9 (2014) https://doi.org/10.1186/1743-8977-11-9
  65. A. Takagi, A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, J. Kanno, Induction of mesothelioma in p53+/mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 33, 105-116 (2008) https://doi.org/10.2131/jts.33.105
  66. H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada, Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir. 22, 2-5 (2006) https://doi.org/10.1021/la0520029
  67. T. Theoreta, K.J. Wilkinson, Evaluation of enhanced darkfield microscopy and hyperspectral analysis to analyse the fate of silver nanoparticles in wastewaters. Anal. Methods 9, 3920-3928 (2017) https://doi.org/10.1039/C7AY00615B
  68. C.Y. Usenko, S.L. Harper, R.L. Tanguay, In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon. 45, 1891-1898 (2007) https://doi.org/10.1016/j.carbon.2007.04.021
  69. A. Valipoor et al., A comparative study about toxicity of CdSe quantum dots on reproductive system development of mice and controlling this toxicity by ZnS coverage. Nanomed. J. 2(4), 261-268 (2015)
  70. A. Voutchkova-Kostal, J. Kostal, K.A. Connors, B.W. Brooks, P.T. Anastas, J.B. Zimmerman, Toward rational molecular design for reduced chronic aquatic toxicity. Green Chem. 14, 1001-1008 (2012) https://doi.org/10.1039/c2gc16385c
  71. S. Wang, W. Lu, O. Tovmachenko, U.S. Rai, H. Yu, P.C. Ray, Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 463(1-3), 145-149 (2008) https://doi.org/10.1016/j.cplett.2008.08.039
  72. P. Wick, P. Manser, L. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W. Stark, A. Bruinink, The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121-131 (2007) https://doi.org/10.1016/j.toxlet.2006.08.019
  73. T. Wu, M. Tang, Toxicity of quantum dots on respiratory system. Inhal. Toxicol. International Forum for Respiratory Research 26, 128-139 (2014)
  74. T. Xia et al., Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121-2134 (2008) https://doi.org/10.1021/nn800511k
  75. T. Xia et al., Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5(2), 1223-1235 (2011) https://doi.org/10.1021/nn1028482
  76. K. Yamashita, Y. Yoshioka, K. Higashisaka, Y. Morishita, T. Yoshida, M. Fujimura, H. Kayamuro, H. Nabeshi, T. Yamashita, K. Nagano, Y. Abe, H. Kamada, Y. Kawai, T. Mayumi, T. Yoshikawa, N. Itoh, S. Tsunoda, Y. Tsutsumi, Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33, 276-280 (2010) https://doi.org/10.1007/s10753-010-9182-7
  77. Y. Yang et al., Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice. Nanotoxicology 8, 107-116 (2014) https://doi.org/10.3109/17435390.2012.760014
  78. N. Ye et al., Dissolved organic matter and aluminum oxide nanoparticles synergistically cause cellular responses in freshwater microalgae. J. Environ. Sci. Health 53, 651-658 (2018) https://doi.org/10.1080/10934529.2018.1438814

Cited by

  1. Biogenic Selenium Nanoparticles in Animal Nutrition: A Review vol.11, pp.12, 2021, https://doi.org/10.3390/agriculture11121244
  2. MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO2NP and MWCNT vol.11, pp.12, 2019, https://doi.org/10.3390/nano11123458
  3. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases vol.23, pp.1, 2019, https://doi.org/10.3390/ijms23010131