• Title/Summary/Keyword: drought stress resistance

Search Result 74, Processing Time 0.034 seconds

Leveraging Rice Genetic Diversity: Connecting the Genebank to Mainstream Breeding

  • J. Damien Platten
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.31-31
    • /
    • 2022
  • Rice contains a wealth of genetic diversity, both within Oryza sativa and in related A-genome species. Decades of genetic research into this diversity have identified dozens of major genes contributing to a wide variety of important traits, including disease resistance, abiotic stress tolerance (drought, salinity, submergence, heat, cold etc.), grain quality, flowering date and maturity and plant architecture. Yet despite these opportunities, very few of the major genes and QTLs known have been successfully applied through rice breeding programs to produce sustained changes in farmer's fields. This presentation will briefly examine some of the factors limiting application of major genes in the mainstream breeding programs, and steps that have been taken to alleviate those limitations. As a result of these interventions, dozens of major genes that were previously unavailable to breeders are now being used confidently in the variety development process. Case studies will be discussed of genes critical for blast resistance worldwide, rice yellow mottle virus for Africa, and new validated QTLs for salinity tolerance.

  • PDF

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Physiological Response of Barley to Water Stress and Salt Stress at Seedling Stage (보리 유묘기의 한해와 염해반응)

  • 최원열;박종환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.693-698
    • /
    • 1997
  • Drought resistance and salt resistance of seedlings were compared with the polyethylene glycol(P.E.G) and NaCl solutions of the same osmotic potential($\Psi_\pi$=-10 bar). Plant height, seedling dry weight, chlorophyll content and leaf water potential decreased while the free proline content increased more in the P.E.G. than in the NaCl solution. Free amino acids increased 2.6 times in the P.E.G. solution and 3.6 times in the NaCl solution more than in the untreated(Hoagland's solution). Free proline occupied 66% and 61% of the content of total amino acids under water stress and salt stress, respectively. Besides free proline, phenylalanine in the P.E.G. solution and phenylalanine, alanine and asparagine in the NaCl solution increased distinctly. In short, it was shown that water and salt stress responses in seedling stage were relatively similar.

  • PDF

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

Cloning And Characterization of Pathogen-Inducible EREBP-Like Transcription Factor(CaNR19) From Hot Pepper (Capsicum annuum L.)

  • Yi, So-Young;Kim, Jee-Hyub;Yu, Seung-Hun;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.2-78
    • /
    • 2003
  • An EREBP/AP2-type transcription factor (CaPFl) was isolated by DDRT-PCR following inoculation of soybean pustule pathogen Xanthomonas axonopodis pv. glycines Bra which induces HR on pepper leaves. Genomic Southern blot analysis revealed that the CaPFl gene is present as a single copy within the hot pepper genome. The deduced amino acid sequence of CaPFl has two potential nuclear localization signals, a possible acidic activation domain, and an EREBP/AP2 motif that could bind to a conserved cis- element present in promoter region of many stress-induced genes. The mRNA level of CaPFl was induced by both biotic and abiotic stresses. We observed higher-level transcripts in resistance-induced pepper tissues than diseased tissues. Expression of CaPFl is also induced upon various abiotic stresses including ethephon, MeJA, cold stress, drought stress and salt stress treatments. To study the role of CPFI in plant, transgenic Arabidopsis and tobacco plants which express higher level of pepper CaPFl were generated. Global gene expression analysis of transgenic Arabidopsis by cDNA microarray indicated that expression of CaPFl in transgenic plants affect the expression of quite a few GCC box and DRE/CRT box-containing genes. Furthermore, the transgenic Arabidopsis and tobacco plant, expressing CaPFl showed tolerance against freezing temperature and enhanced resistance to Pseudomonas syrnigae pv. tabaci. Taken together, these results indicated that CaPFl is a novel EREBP/AP2 transcription factor in hot pepper plant and it may has a significant role(s) in regulation of biotic and abiotic stresses in plant.

  • PDF

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF

Effects of Water Conditions and Rhizobium Inoculation on the Growth of Wisteria floribunda Seedlings in Slope Soils (절개지 토양에서 수분조건과 근류균 접종이 등나무 유묘생장에 미치는 영향)

  • Park, Chong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.425-435
    • /
    • 2006
  • The objectives of this research were to investigate the drought resistance as well as the growth of Wisteria floribunda seedlings with the soil water conditions. The seedlings for the research were grown in pots with strict water content control on a frame located outdoors. During the experiments, the soil water contents were adjusted to 5, 10, 20, 30, 40, 50, 60, and 70%. In addition, the effects of Rhizobium inoculation on the growth of seedlings were investigated. The experimental results are summarized as follows: 1. The seedlings in the pots with 5% soil water content withered to death due to the water stress. Withering or any distinct growth was not observed from the seedlings in the 10% soil water content. It can be inferred from these results that about 5% of soil water content is the wilting point of W. floribunda seedlings and about 10% is the critical soil water content of its growth in this experiment soils. Therefore, it seems that W. floribunda possesses a good drought resistance. 2. From the analyses of the main growth parameters such as stem elongation, diameter growth, leaf area growth and total dry weight, it was found that the seedling growth can be improved with increasing soil water contents. The relation between each growth parameter(Y) and the soil water contents(W) was well described by a quadratic equation, $Y=a+bW+cW^2$. 3. In soil water contents higher than 20%, the seedling growth(Y) was remarkable along with-its extended growing period, and related to the growing period(D) by a quadratic equation, $Y=a+bD+cD^2$. 4. The artificial inoculation of Rhizobiun promoted the growth of Wisteria floribunda seedlings. 5. Rhizobium was found to be more readily inoculated and to form more root nodules compared to seedlings grown in higher soil water contents.

Comparative Water Relations of Quercus acuta and Castanopsis cuspidata var sieboldii in Early Winter (붉가시나무(Quercus acuta)와 구실잣밤나무(Castanopsis cuspidata var, sieboldii)의 초겨울 비교 수분 관계)

  • Park, Bum-Jin;Park, Yong-Sam;Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.231-235
    • /
    • 2005
  • Comparative water relations of Quercus acuta and Castanopsis cuspidata var, sieboldii were analyzed to assess their resistance to drought and low temperature stresses from early November to early December, As air temperature decreased both species showed an increased content of osmotically active solute concentration per unit of dry weight (NS/DW), leading to lower osmotic potential of both species at both full turgid state $(OP_{sat})$ and turgor loss point $(OP_{tlp})$ in December than November. No major difference in the ability to adjust osmotically was noticed between the two. This finding suggests that both species must respond adaptively under water and low temperature stresses to maintain turgor pressure in winter season. In addition to osmotic adjustment, a low bulk modulus of elasticity $(E_{max})$ shown in Castanopsis cuspidata var. sieboldii must also play an important role in turgor maintenance during winter season being apt to happen water and low temperature stresses in plants.

Analysis of ZjWRKY3, ZjWRKY7 induced by multiple stress in Zoysia japonica (다양한 스트레스에 유도되는 들잔디 ZjWRKY3, ZjWRKY7의 분석)

  • Kim, Woo-Nam;Song, In-Ja;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Lee, Yong-Eok;Kwon, Yong-Ik;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.220-228
    • /
    • 2017
  • Many crops including cereals, tuber crops, feeds, and turf grasses are often damaged by various environmental stresses such as drought, salt, cold, and high temperature, causing the reduction of their productivity. Plants are sessile and cannot escape from environmental stresses. Thus, plants evolve in the direction of overcoming the environmental stresses. Some plant genes such as ARF, ABI3, NAC, HSF, and WRKY are known to respond to environmental stresses as they transcriptionally regulate the stress response pathways. For example, the OsWRKY76 gene contributes to the enhanced resistance to low temperatures and pathogenic infections. The AtWRKY28 also plays a role in environmental stresses. Zoysiagrass (Zoysia japonica Steud.) is popularly grown for gardens and golf courses. However, the function of the WRKY gene, another environmental stress-related gene, is not known in zoysiagrass. In this study, the ZjWRKY3 and ZjWRKY7 genes with one shared WRKY domain have been isolated in zoysiagrass. The expression of these genes increased in response to low temperature, drought, and salt stresses. Furthermore, the infection of the brown patch-causing Rhozoctonia solani induced the expression of ZjWRKY3 and ZjWRKY7. The corresponding proteins bind to the W-box of the Zjchi promoter, possibly regulating their transcriptions. The researchers suggest that the ZjWRKY3 and ZjWRKY7 genes transcriptionally regulate abiotic and biotic stress related downstream genes.

Studies on the Physiological and Biochemical Mechanisms of the Drought Resistance in Winter Barley (대맥한발저항성 기작에 관한 생리적 및 생화학적 연구)

  • 최원열;김용환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.451-457
    • /
    • 1983
  • This study was conducted to estimate the effect of the drought on the changes of chlorophyll, protein and proline content of upper three leaves, and the grain yield components of barley plant (CV. baegdong) subjected to water stress at four stages: late vegetative, boot, anthesis early grain filling. 1. In comparison with leaf posititions in water stress, the first leaf below flag leaf maintained the highest relative turgidity, chlorophyll and protein content and showed the least proline accumulation. And, in terms of growth stages in water stress, chlorophyll was shown to be highest at anthesis stage, protein being highest at boot stage and proline being least at boot stage. 2. In boot stages, culm and spike length, and Number of grains per spike were remarkably decreased. And the weight of 1000 grains was at least level in the early grain filling stage, and also the grain size was comparatively decreased at boot and two following stages. 3. The protein content of grain by water stress, apart from early grain filling stage, was not significantly affected by water stress at different growth stages. 4. The rate of sterility was particularly increased at boot and anthesis stages. 5. It was eventually concluded that the boot stage among four growth stages, and the flag leaf in 3 leaf positions were mostly damaged by water stress at reproductive growth stage.

  • PDF