• Title/Summary/Keyword: driving stiffness

Search Result 146, Processing Time 0.027 seconds

Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction (변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석)

  • Kim, Woo-Hyung;Jung, Tae-Il;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System (공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어)

  • Cho, M.S.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF

Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

Development of Driving Control Algorithm for Vehicle Maneuverability Performance and Lateral Stability of 4WD Electric Vehicle (4WD 전기 차량의 선회 성능 및 횡방향 안정성 향상을 위한 주행 제어 알고리즘 개발)

  • Seo, Jongsang;Yi, Kyongsu;Kang, Juyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • This paper describes development of 4 Wheel Drive (4WD) Electric Vehicle (EV) based driving control algorithm for severe driving situation such as icy road or disturbance. The proposed control algorithm consists three parts : a supervisory controller, an upper-level controller and optimal torque vectoring controller. The supervisory controller determines desired dynamics with cornering stiffness estimator using recursive least square. The upper-level controller determines longitudinal force and yaw moment using sliding mode control. The yaw moment, particularly, is calculated by integration of a side-slip angle and yaw rate for the performance and robustness benefits. The optimal torque vectoring controller determines the optimal torques each wheel using control allocation method. The numerical simulation studies have been conducted to evaluated the proposed driving control algorithm. It has been shown from simulation studies that vehicle maneuverability and lateral stability performance can be significantly improved by the proposed driving controller in severe driving situations.

An Optimal Controller Design for Gun Driving System of Combat Vehicles (기동전투차량의 포 구동장치 최적제어기 설계)

  • Kim, Ji-Young;Lee, Seok-Jae;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.62-65
    • /
    • 2004
  • An optimal robust controller design method for gun driving system is discussed in this paper. The parameters of the gun driving controller are tuned by using the LQR characteristics for the performance and robustness. Tuning method that optimize velocity error gives a significant improvement over the existing PID tuning methods. It is shown that the tuning result of real gun driving system which is regarded as rigidness model or stiffness model satisfy performance and robustness.

  • PDF

Stiffness Comparison with Design of GFRP Roof Panels Prepared by RTM Method (RTM 성형 GFRP 차체 설계에 따른 강성연구)

  • 유용문;윤의박;윤여성;이순홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.32-38
    • /
    • 1998
  • In order to investigate the relationship between the stiffness and structure of the automotive roof panels, two kinds of glass fiber reinforced plastic(GFRP) roof panels without and with insert material were fabricated by resin transfer molding(RTM) method. The stiffness test was performed at the same condition as it of actual driving. The structural design and material selection for improving the recyclability of GFRP roof panels were also covered.

  • PDF

Application of Piezoceramic Actuator for Inch-Worm (이송 자벌레로의 압전소자 응용)

  • 윤재헌;채재희;김인수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.877-880
    • /
    • 2001
  • This paper presents the new linear motion device so called "inch-worm" which gets large displacement by incrementally summing small displacements of PZT actuators. Dynamics stiffness of inch-worm is generally low compared to its driving condition due to the requirement of inch-worm like small size and light weight. This low stiffness may degenerate the positional precision of inch-worm. An inch-worm is realized using three PZT actuators, a monolithic moving device and a guide way frame. Driving input signal is shaped to reduce the residual vibration of inch-worm by LQG controller and cycloid step input. The practical feasibility of inch-worm is also examined by running test.ning test.

  • PDF

Nonlinear Analysis of Gear Driving System due to Misalignment (정렬불량에 의한 기어구동계 비선형 해석)

  • Lee, B. H.;Park, Y. S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.311.2-311
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear driving system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. (omitted)

  • PDF