• 제목/요약/키워드: driving control

검색결과 2,808건 처리시간 0.025초

공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구 (A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation)

  • 신행봉;차보남
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

주행속도를 달리했을 때 운전 중 휴대 전화 사용이 운전 수행에 미치는 효과 (The effects of cellular-phone use on driving performance under various driving speed conditions)

  • 최시환;이재식
    • 감성과학
    • /
    • 제6권3호
    • /
    • pp.1-11
    • /
    • 2003
  • 본 연구는 운전 시뮬레이션 실험을 통해 운전 중 휴대 전화 사용이 운전 속도의 변화에 따라 운전 수행에 어떠한 영향을 미치는지를 알아보고자 할 목적으로 수행되었다. 본 연구에서는 일반적인 토로 상황을 모사하기 위해 직선 도로와 곡선 도로가 모두 제시되었으며, 운전자는 60, 80, 100및 120km/h의 주행 속도를 체계적으로 변화시킨 조건에서 운전하도록 하였다 이러한 운전 조건에 따라 운전자들은 핸즈-프리 장치 조건과 핸즈-헬드 장치조건 중 한 조건에 할당되었으며, 각각의 휴대전화 유형에서 전화를 사용하는 조건(실험 조건)과 사용하지 않는 조건(통제 조건)을 모두 수행하였다 이러한 조건에 대해 운전자들이 보인 차량의 종적 통제와 횡적 통제를 측정하여 운전 수행을 비교하였다. 본 연구의 결과를 요약하면 다음과 같다. (1) 전체적인 분석에서 전화를 사용하는 조건과 사용하지 않는 조건에서 운전 수행의 차이가 관찰되었고, (2) 전화 사용의 유형(즉, 핸즈-프리와 핸즈-헬드 조건) 사이에는 차이가 없었다. (3) 일반적으로, 운전 속도가 증가함에 따라 전화를 사용하면서 운전을 하는 조건에서 속도의 변산성과 차선 내 횡적 위치, 그리고 차간 거리의 변산성이 증가하였다. 이러한 결과들은 운전 중에 어떠한 유형의 휴대폰을 사용하는 것이 더 운전 수행에 손상을 주는지의 여부보다 단순히 전화를 사용하는 것 자체가 운전 수행을 손상시킬 수 있다는 것을 시사하며, 특히 운전 수행과 휴대폰 사용의 관계를 고려할 때 다른 운전 조건(예를 들면, 운전 속도)을 고려해야 한다는 것을 시사한다.

  • PDF

장애인용 핸드컨트롤을 이용한 가속 및 제동 페달을 동작할 때의 상지 근육 EMG 분석 및 운전 성능 평가 (Analysis of Muscle Activities and Driving Performance for Manipulating Brake and Accelerator Pedal by using Left and Right Hand Control Devices)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권2호
    • /
    • pp.74-81
    • /
    • 2017
  • The purpose of this study was to investigate the EMG characteristics of driver's upper extremity and driving performance for manipulating brake and accelerator pedal by using left and right hand control devices during simulated driving. The people with disabilities in the lower limb have problems in operation of the motor vehicle because of functional loss for manipulating brake and accelerator pedal. Therefore, if hand control device is used for adaptive driving controls in people with lower limb impairments, the disabled people can improve their quality of life by driving a motor vehicle. Six subjects were participated in this study to evaluate driving performance and muscle activities for operating brake and accelerator pedal by using two different hand controls (steering column mounted hand control and floor mounted hand control) in driving simulator. We measured EMG activities of six muscles (posterior deltoid, middle deltoid, triceps, biceps, flexor carpi radialis, and extensor carpi radialis) during pushing and pulling movement with different hand controls for acceleration and braking. STISim Drive 3 software was used for the performance test of different hand control devices in straight lane course for time to reach target speed and brake reaction time. While pulling the hand control lever toward the driver, normalized EMG activities of middle deltoid, triceps and flexor carpi radialis in subjects with disabilities were significantly increased (p < 0.05) compared to the normal subjects. It was also found that muscle responses of posterior deltoid were significantly increased (p < 0.05) when using the right hand control than left hand control. While pushing the hand control lever forward away from the driver, normalized EMG activities of posterior deltoid, middle deltoid and extensor carpi radialis in subjects with disability were significantly increased (p < 0.05) compared to the normal subjects. It was shown that muscle responses of middle deltoid, biceps and extensor carpi radialis were significantly increased when using the right hand control than left hand control. Brake reaction time and time to reach target speed in subjects with disability was increased by 12% and 11.3% on average compared to normal subjects. The subjects with physical disabilities showed a tendency to relatively slow acceleration at the straight lane course.

전압 분배용 전하펌프를 사용한 LED 구동회로 (LED Driving Circuit using Charge Pump for Voltage Distribution)

  • 윤장희;유성호;염정덕
    • 조명전기설비학회논문지
    • /
    • 제26권8호
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, a new LED driving circuit which is able to control dimming of LED is proposed using charge pump. The proposed LED driving circuit steps down the input voltage to operate LED without DC-DC converter. The operation of this driving circuit is verified by P-Spice simulation, and the characteristics of the driving circuit is measured and evaluated in the experiments. As a result, the driving circuit efficiency of 88.5[%] is obtained when all LEDs are turned on by digital control method at the highest dimming level(255/255).

가속도센서를 이용한 운전패턴 인식기법 (Recognition of Driving Patterns Using Accelerometers)

  • 허근섭;배기만;이상룡;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.517-523
    • /
    • 2010
  • In this paper, we proposed an algorithm to detect aggressive driving status by analysing six kinds of driving patterns, which was achieved by comparing for the feature vectors using mahalanobis distance. The first step is to construct feature matrix of $6{\times}2$ size using frequency response of the time-series accelerometer data. Singular value decomposition makes it possible to find the dominant eigenvalue and its corresponding eigenvector. We use the eigenvector as the feature vector of the driving pattern. We conducted real experiments using three drivers to see the effects of recognition. Although there exists differences from individual drivers, we showed that driving patterns can be recognized with about 80% accuracy. Further research topics will include the development of aggressive driving warning system by improving the proposed technique and combining with post-processing of accelerometer signals.

운전 시뮬레이터의 주행감각 재현을 위한 새로운 가속도 모의 수법 알고리즘 개발 (A New Washout Algorithm for Reappearance of Driving Perception of Simulator)

  • 유기성;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.519-528
    • /
    • 2004
  • For reappearance of driving perception in a driving simulator, a washout algorithm is required. This algorithm can reappear the vehicle driving motions within workspace of the driving simulator. However classical washout algorithm contains several problems such as selection of order, cut-off frequency of filters, generation of wrong motion cues by characteristics of filters, etc. In order to overcome these problems, this paper proposes a new washout algorithm which gives more accurate sensations to drivers. The algorithm consists of an artificial inclination of the motion plate and human perception model with band pass filter and dead zone. As a result of this study, the motion of a real car could be reappeared satisfactorily in the driving simulator and the workspace of motion plate is restrained without scaling factor.

PC 기반형 자동차 운전 연습기 개발 (Development of car driving trainer under PC environment)

  • 이승호;김성덕
    • 제어로봇시스템학회논문지
    • /
    • 제3권4호
    • /
    • pp.415-421
    • /
    • 1997
  • A car driving trainer for beginners developed under PC-based environment is described in this paper. For this trainer, a hardware is implemented as a practice car, and a trainer program is designed by computer image generation method to display 3-dimensional images on a CRT monitor. The trainer program consists of 3 main parts, that is, a speed estimate part, a wheel trace calculation part and a driving image generation part. Furthermore, a map editor is also installed for taking any test drive. After comparing this driving trainer to specify it was verified that the developed car driving trainer showed has good performances, such as lower cost, higher resolution and better image display speed.

  • PDF

Advanced Real time IoT Eco-Driving Assistant System

  • Jouini, Anis;Cherif, Adnane;Hasnaoui, Salem
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.237-244
    • /
    • 2022
  • Eco-driving of vehicles today presents an advantage that aims to reduce energy consumption and limit CO2 emissions. The application for this option is possible to older vehicles. In this paper, we propose an efficient implementation for IoT (Internet of Things) system for controlling vehicle components that affect the quality of driving (acceleration, braking, clutch, gear change) via Smartphone using Wi-Fi and BLE as communication protocol. The user can see in real-time data from sensors that control driver action on vehicle driving systems such as acceleration, braking, and vehicle shifting through a web interface. Thanks to this communication, the user can control his driving quality and, hence, eco-driving can be achieved

독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상 (Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving)

  • 장재호;김창준;김상호;강민성;백성훈;김영수;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

무선통신을 이용한 주행 제어가 가능한 볼 로봇의 설계 및 제어 (Design and Control of Ball Robot capable of Driving Control by Wireless Communication)

  • 이승열;정명진
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1236-1242
    • /
    • 2019
  • 최근 로봇 기술의 발전에 따라 모바일 로봇에 대한 연구가 주목을 받고 있다. 현재 모바일 로봇의 대부분은 2륜 및 4륜 기반으로 개발되어 직선 주행에는 강하지만 방향전환 및 제자리 회전에 제한이 있으며, 이러한 문제점을 극복하고자 구 형태의 바퀴를 사용하는 볼 로봇에 대한 연구가 진행되고 있다. 볼 로봇은 협소한 공간에서 큰 제약 없이 이동이 가능하다는 장점을 가지고 있지만, 구조적으로 불안정하여 안정적인 자세 및 주행 제어가 요구된다. 본 연구에서는 무선통신으로 자세 및 주행 제어가 가능한 스마트폰 어플리케이션을 제안하고, 이를 적용하여 제작된 볼 로봇을 이용하여 자세 및 주행 제어 실험을 수행하였다. 실험을 통해 Roll 각도 오차 ±0.8도, Pitch 각도 오차 ±0.7도 이내에서 제어됨을 확인하였으며, 1m 주행제어에 대해 x축 방향 위치오차 ±0.1m, y축 방향 위치오차 ±0.08m 이내에서 제어됨을 확인하였다.