• Title/Summary/Keyword: drift direction

Search Result 121, Processing Time 0.027 seconds

Spray and Atomization Characteristics of an Agricultural Nozzle by Changing the Injection Pressures (분사 압력 변화에 따른 농업용 노즐의 분무 및 미립화 특성)

  • Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.189-196
    • /
    • 2021
  • Spray drift of agricultural nozzles has become a big issue because it causes low precision targeting and environmental pollution. In order to reduce the spray drift, study spray characteristics of agricultural nozzles is virtually important. In this study, shadowgraph and Mie-scattering visualization techniques were used to study the macroscopic spray and atomization characteristics of an agricultural nozzle. PDPA was used to measure the atomization characteristics of spray. The injection pressure is set to 1 bar, 3 bar and 5 bar, which covers the working range of the nozzle. For the PDPA experiment, 75 points were measured in an area of 160 mm × 120 mm at 10 mm intervals directly below the nozzle to grasp the overall atomization characteristics of the spray. It was found that the spray width and sheet width showed a linear correlation. As the injection pressure increased, the sheet expansion in the 0-degree direction and the sheet swing in the 90-degree direction jointly promoted the breakup of the sheet. In addition, the area close to the central axis had a large droplet velocity, and since a large droplet velocity promoted atomization of spray, the area close to the central axis had a smaller spray droplet diameter than the left and right regions.

The Effects of Coupling Beam on Lateral Drift of High-rise Buildings (고층건물의 횡변위에 대한 커플링보의 효과)

  • Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5931-5937
    • /
    • 2011
  • The effects of coupling beam, which is generally used in high-rise building structure system as shear wall-coupling beam, on the lateral drift of high-rise buildings are studied in this paper. Six different analytical models, which are combination of two inputs, such as concrete strength and wall thickness, are selected and analyzed on lateral drifts with different stiffness of coupling beams. MIDAS GEN was used for analysis. Calculated lateral drifts were compared with allowable limits(H/400~H/500) proposed by standard CEN EC 3/1, in order to analyze the control evaluation of coupling beams. Calculated x-direction displacements were 68~87 percent of allowable limit(H/500). With increase of wall thickness(100mm) and concrete strength(5Mpa), eight to ten percent and four percent of x and y-direction displacement were decreased individually. About three percent of lateral displacement was increased with 20 percent decrease of coupling beam stiffness and additional 20 percent decrease resulted in additional five to eight percent increase.

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.225-228
    • /
    • 2017
  • In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.

3D Etching Profile used Inductive Coupled Plasma (ICP) Source with Ambipolar Drift and Binary-Collision Effect. (쌍극성표동 효과와 이체충돌효과를 고려한 ICP(Inductive Coupled Plasma) 3차원 식각)

  • 이영직;이강환;이주율;강정원;문원하;손명식;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.891-894
    • /
    • 1999
  • ICP reactor produces high-density and high-uniformity plasma in large area, are has excellent characteristic of direction in the case of etching. Until now, many algorithms used one mesh method. These algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously. And difficult consider am-bipolar drift effect.

  • PDF

Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Theoretical Analysis (회전요동하는 원통내의 유동특성 - 이론적 해석)

  • Seo,Yong-Gwon;Kim, Hyeon-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3960-3969
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal and circular oscillation is analyzed theoretically. Under the assumption of small-amplitude oscillation, the governing equations take linear forms. The velocity field is obtained in terms of the first kind of Bessel function of order 1. It was found that a particle describes an orbit close to a circle in the central region and an arc near the side wall. We also obtained the Stokes' drift velocity induced by the traveling wave along the circumferential direction. The Eulerian streaming velocities at the edge of the bottom and side boundary layers were also obtained. It was shown that the vertical component of the steady streaming velocity on the side wall is almost proportional to the amplitude of the free surface motion.

DNA Separation Chips Using Asymmetrically-Switched Nonuniform Electric Fields (비대칭 교차전기장의 불균일 분포를 이용한 DNA 분리 소자)

  • Yi, So-Yeon;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.265-268
    • /
    • 2009
  • We present the experimental study to realize a DNA separation chip using asymmetrically-switched nonuniform electric fields. The DNA separation chip redistributes DNA molecules within a specific area based on the size- and field-dependent nonlinearity of DNA drift velocity. The present chip is composed of a width variable channel to distribute nonuniform electric field, a DNA loading slit and a pair of electrodes to apply electric field. We focus on the design of DNA separation chips with identifying the nonlinearity of DNA drift velocity using three different DNA molecules (11.1kbp, 15.6kbp, and 48.5kbp) in the chips. It is demonstrated that different size of DNA shows different net migration in different direction under the asymmetrically-switched nonuniform electric field.

Bit Error Characteristics of Passive Phase Conjugation Underwater Acoustic Communication Due to a Drifting Source

  • Lin Chun-Dan;Ro Yong Ju;Rouseff Daniel;Yoon Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.61-66
    • /
    • 2005
  • Experimental work in underwater acoustic communications using passive phase conjugation has shown that the demodulation error depends on the relative drift rate between the source and receiver [Rouseff et al., IEEE J. Oceanic Eng. 26, 821-831 (2001)]. The observed effect involves the mismatch between the initial impulse response and the subsequent response after the source or receiver has changed locations. In the present work, the effect of drifting source is analyzed by numerical simulations and compared to the experimental results. The communications bit error rate is qualified as a function of drift rate, drifting direction, and source-receiver range.

IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization (드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘)

  • Ji, Sung-In;Lee, Jung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.

Prediction of engineering demand parameters for RC wall structures

  • Pavel, Florin;Pricopie, Andrei
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.741-754
    • /
    • 2015
  • This study evaluates prediction models for three EDPs (engineering demand parameters) using data from three symmetrical structures with RC walls designed according to the currently enforced Romanian seismic design code P100-1/2013. The three analyzed EDPs are: the maximum interstorey drift, the maximum top displacement and the maximum shear force at the base of the RC walls. The strong ground motions used in this study consist of three pairs of recordings from the Vrancea intermediate-depth earthquakes of 1977, 1986 and 1990, as well as two other pairs of recordings from significant earthquakes in Turkey and Greece (Erzincan and Aigion). The five pairs of recordings are rotated in a clockwise direction and the values of the EDPs are recorded. Finally, the relation between various IMs (intensity measures) of the strong ground motion records and the EDPs is studied and two prediction models for EDPs are also evaluated using the analysis of residuals.

Conceptual Design and Wind Load Analysis of Tall Building

  • Lee, S.L.;Swaddiwudhipong, S.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • The paper describes the conceptual design, structural modelling and wind load analysis of tall buildings. The lateral stiffness of the building can be obtained economically through the interaction of core walls with peripheral frame tube and/or bundle of frame tubes and integrated design of the basement. The main structural components should be properly distributed such that the building will deflect mainly in the direction of the applied force without inducing significant response in other directions and twist. The cost effectiveness can be further enhanced through close consultation between architects and engineers at an early stage of conceptual design. Simplified structural modelling of the building and its response in three principal directions due to wind load are included. Effects of the two main structural components on the performances of a 70-story reinforced concrete building in terms of peak drift and maximum acceleration under wind load are discussed.

  • PDF