• Title/Summary/Keyword: drag and lift

Search Result 641, Processing Time 0.028 seconds

Numerical Study on the Aerodynamic Performance of Asymmetric Vertical Folding Rotor Sail (비대칭 수직 접이식 로터세일의 성능 평가에 관한 수치해석 연구)

  • Jung Yoon Park;Janghoon Seo;Dong-Woo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.68-76
    • /
    • 2024
  • The rotor sail is one of the representative devices in eco-friendly wind-assisted propulsion systems that have been practically applied to commercial ships. The present study proposes an asymmetric vertical folding rotor sail (AFRS) designed for small ships, featuring asymmetric geometry along the vertical direction and the function of vertical folding. To evaluate the aerodynamic performance of rotor sail, the drag, lift and lift-to-drag ratio were derived using computational fluid dynamics. The aerodynamic performance of AFRS was compared with that of normal rotor sail with different aspect ratios and spin ratios. The effect of geometric parameters on the aerodynamic performance of AFRS was assessed by varying the asymmetric diameter ratio. The maximum improvement in lift-to-drag ratio for AFRS was approximately 12% in the considered case. Additionally, the resistance is decreased when AFRS is vertically folded without rotating. Throughout the present study, improved aerodynamic and resistance performances for AFRS were confirmed, which will successfully provide additional propulsion to small ships.

A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE (차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, D.G.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.

Flow structures around rectangular cylinder in the vicinity of a wall

  • Derakhshandeh, J.F.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.293-304
    • /
    • 2018
  • A numerical study is conducted on the flow characteristics of a rectangular cylinder (chord-to-width ratio C/W = 2 - 10) mounted close to a rigid wall at gap-to-width ratios G/W = 0.25 - 6.25. The effects of G/W and C/W on the Strouhal number, vortex structure, and time-mean drag and lift forces are examined. The results reveal that both G/W and C/W have strong influences on vortex structure, which significantly affects the forces on the cylinder. An increase in G/W leads to four different flow regimes, namely no vortex street flow (G/W < 0.75), single-row vortex street flow ($0.75{\leq}G/W{\leq}1.25$), inverted two-row vortex street flow ($1.25<G/W{\leq}2.5$), and two-row vortex street flow (G/W > 2.5). Both Strouhal number and time-mean drag are more sensitive to C/W than to G/W. For a given G/W, Strouhal number grows with C/W while time-mean drag decays with C/W, the growth and decay being large between C/W = 2 and 4. The time-mean drag is largest in the single-row vortex street regime, contributed by a large pressure on the front surface, regardless of C/W. A higher C/W, in general, leads to a higher time-mean lift. The maximum time-mean lift occurs for C/W = 10 at G/W = 0.75, while the minimum time-mean lift appears for C/W = 2 at the same G/W. The impact of C/W on the time-mean lift is more substantial in single-row vortex regime. The effect of G/W on the time-mean lift is larger at a larger C/W.

Effect of Divergent Trailing Edge Modification of Supercritical Airfoil in Transonic Flow (천음속유동에서 초임계익형 후연확대수정의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.183-189
    • /
    • 1997
  • The computation of the flow around a supercritical airfoil with a divergent trailing edge(DTE) modification(DLBA 243) is compared to that of original supercritical airfoil(DLBA 186). For this computation, Reynolds-Averaged Navier-Stokes equations are solved with a linearized block implicit ADI method and a mixing length turbulence model. Results show the effects of the shock and separated flow regions on drag reduction due to DTE modification. Results also show that DTE modification accelerates the boundary layer flow near the trailing edges which has an effect similar to a chordwise extension that increases circulation and is consistent with the calculated increase in the recirculation region in the wake. Airfoil with DTE modification achieves the same lift coefficient at a lower incidence and thus at a lower drag coefficient, so that lift-to-drag ratio is increased in transonic cruise conditions compared to the original airfoil. The reduction in drag due to DTE modification is associated with weakening of shock strength and delay of shock which is greater than the increase in base drag.

  • PDF

Unsteady Lift and Drag Forces Acting on the Elliptic Cylinder

  • Kim Moon-Sang;Park Young-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.167-175
    • /
    • 2006
  • A parametric study has been accomplished to figure out the effects of elliptic cylinder thickness, angle of attack, and Reynolds number on the unsteady lift and drag forces exerted on the elliptic cylinder. A two-dimensional incompressible Navier-Stokes flow solver is developed based on the SIMPLER method in the body-intrinsic coordinates system to analyze the unsteady viscous flow over elliptic cylinder. Thickness-to-chord ratios of 0.2, 0.4, and 0.6 elliptic cylinders are simulated at different Reynolds numbers of 400 and 600, and angles of attack of $10^{\circ},\;20^{\circ},\;and\;30^{\circ}$. Through this study, it is observed that the elliptic cylinder thickness, angle of attack, and Reynolds number are very important parameters to decide the lift and drag forces. All these parameters also affect significantly the frequencies of the unsteady force oscillations.

A Computational Study on Turbulent Flows around Single and Tandem Two-Dimensional Hydrofoils with Shallow Submergence

  • Kim, H.T.;Park, J.B.;Kim, W.J.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • Reynolds-averaged Navier-Stokes equations are numerically solved using a secondorder finite difference method for the analysis of turbulent flows around single and tandem hydrofoils advancing under the free surface. The location of the free surface, not known a priori, is computed from the kinematic free surface condition and the computational grid is conformed at each iteration to the free surface deformation. The eddy viscosity model of Baldwin-Lomax is employed for the turbulence closure. The method is validated through the comparision of the numerical results with the experimental data for a single hydrofoil of a Joukowski foil section. A computational study is also carried out to investigate the effect of the submergence depth and the Froude number on the lift and the drag of the hydrofoil. For tandem hydrofoils, computations are performed for several separation distances between the forward and aft foils to see the interference effect. The result shows clearly how the lift and drag change with the separation distance.

  • PDF

Application of Immersed Boundary Method for Flow Over Stationary and Oscillating Cylinders

  • Lee Dae-Sung;Ha Man-Yeong;Kim Sung-Jin;Yoon Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.849-863
    • /
    • 2006
  • IBM (Immersed Boundary Method) with feedback momentum forcing was applied to stationary and moving bodies. The capability of IBM to treat the obstacle surfaces, especially with moving effect has been tested for two dimensional problems. Stationary and oscillating cylinders were simulated by using IBM based on finite volume method with Cartesian coordinates. For oscillating cylinder, lateral and vertical motions are considered, respectively. Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. Also, the instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios well represented those of previous researches. More feasibility study for IBM has been carried out to two oscillating cylinders. Drag and lift coefficients are presented for two cylinders oscillating sinusoidally with phase difference of $180^{\circ}$.

Flow and Fluid Force around a Rotating Circular Cylinder with Square Grooves (정방형 홈을 가진 회전원주 주위의 유동과 유체력)

  • Kang, Myeong-Hoon;Ro, Ki-Deok;Kong, Tae-Hue
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1460-1465
    • /
    • 2004
  • Flow patterns around a rotating circular cylinder having square dimpled surface were visualized by the hydrogen bubble technique at velocity ratios from a=0 to 4.8 and Reynolds number of $Re=1.0{\times}10^{4}$. The wake region of the cylinder was reduced as the velocity ratios increase and was smaller than that of the smooth cylinder without dimples at the same velocity ratio. The hydrodynamic characteristics on the cylinder was investigated by measuring of lift and drag at velocity ratios from a=0 to 4.1 and Reynolds number from $Re=1.2{\times}10^{4}$ to $Re=2.0{\times}10^{4}$. As the velocity ratios increase, the average lift and drag coefficients were increased and at the same velocity ratio, the average lift was larger but the average drag was smaller than that of the smooth cylinder.

  • PDF

Flow Simulation past a Circular Cylinder by 2-D URANS (2-D URANS에 의한 원형 실린더 주위의 와류유출 유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.48-54
    • /
    • 2004
  • Vortex-shedding flows past a circular cylinder for 200≤ Re ≤ 5000 are numerically simulated with the PowerCFD code, using a finite volume method and an unstructured grid system, developed by the author. The simulation is peformed by solving the unsteady 2-D Wavier-Stokes equations with both no model and turbulence model. The resulting Reynolds number dependence of the Strouhal number and of the drag and lift coefficients is compared with both experiments and previous numerical results. It is found that, in the range of 200≤ Re ≤ 5000 the calculation method with a turbulence model is capable of producing reasonably more accurate results than that with no model for the main practically relevant parameters such as Strouhal number, drag and lift coefficients.

Lift Enhancement and Drag Reduction on an Airfoil at Low Reynolds Number using Blowing and Distributed Suction

  • Chao, Song;Xudong, Yang
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • An active flow control technique using blowing and distributed suction on low Reynolds airfoil is investigated. Simultaneous blowing and distributed suction can recirculate the jet flow mass, and reduce the penalty to propulsion system due to avoiding dumping the jet mass flow. Energy is injected into main flow by blowing on the suction surface, and the low energy boundary flow mass is removed by distributed suction, thus the flow separation can be successfully suppressed. Aerodynamic lift to drag ratio is improved significantly using the flow control technique, and the energy consumption is quite low.