• 제목/요약/키워드: downlink signal reception

검색결과 8건 처리시간 0.025초

Design of the Magnetic Field Sensing System for Downlink Signal Reception and Interference Cancelling for Through-the-Earth Communication

  • Zhao, Peng;Jiang, Yu-zhong;Zhang, Shu-xia;Ying, Wen-wei
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.330-339
    • /
    • 2016
  • A magnetic field sensing system with a single primary sensor and multiple reference sensors deployed locally and orthogonally, was proposed for downlink signal reception and interference cancelling for Through-the-Earth Communication (TEC). This paper mathematically analyzes a design optimization process for a search coil magnetometer (SCM), and applies that process to minimize the bandwidth of the primary SCM for TEC signal reception and the volume of reference SCMs for multiple distributions. The primary SCM achieves a 3-dB bandwidth of 7 Hz, a sensitivity threshold of 120 fT/${\surd}$Hz, and a volume of $2.32{\times}10^{-4}m^3$. The entire sensing system volume is as small as $10^{-2}m^3$. Experiments with interference from industrial frequency harmonics demonstrated an average of 36 dB and 18 dB improvements in signal-to-interference ratio and signal-to-interference plus noise ratio, respectively, using multichannel recursive-least-squares algorithm. Thus, the proposed sensing system can reduce the interference effectively and allows reliable downlink signal reception.

셀 간 협조적 공간 다중화 및 빔포밍을 이용한 하향링크 전송 효율 증대 방안 (A Downlink Spectral Efficiency Improvement Scheme Using Intercell Cooperative Spatial Multiplexing and Beamforming)

  • 장재원;진귀언;성원진
    • 대한전자공학회논문지TC
    • /
    • 제45권7호
    • /
    • pp.45-52
    • /
    • 2008
  • 주파수 재사용 기법을 사용하는 셀룰러 시스템의 경우 단말기가 셀 경계로 이동할수록 인접 셀로부터 오는 간섭 신호의 영향을 받게 되어 성능 열화를 겪게 된다. 본 논문에서는 다중 셀 시스템의 하향링크 전송 시, 지리적으로 떨어져 있는 다수의 기지국에서 상호 협력을 통해 다중 안테나 단말기에 협조적으로 신호를 전송하는 경우 기지국들과 단말기간에 형성된 분산 MIMO (multiple-input multiple-output) 채널을 이용하여 공간 다중화 및 빔포밍 이득을 얻을 수 있는 전송 방안 및 수신 기법을 제안한다. 특히, 주파수 재 사용률과 단말기의 수신안테나 개수의 변화에 따라 제안 기법의 유효 신호 대 간섭 비와 전송효율을 분석 및 산출하고, 기존 셀룰러 시스템에서 널리 사용되는 MRC (maxim ratio combining) 수신 기법의 성능과 비교한다. 셀 경계에서의 성능 이득을 비교함으로써 인접 셀 간섭이 큰 영역에서 제안 기법을 사용할 때 단말기의 전송 효율 향상정도를 평가한다.

Cooperative Interference Mitigation Using Fractional Frequency Reuse and Intercell Spatial Demultiplexing

  • Chang, Jae-Won;Heo, Jun;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • 제10권2호
    • /
    • pp.127-136
    • /
    • 2008
  • For mobile wireless systems with full frequency reuse, co-channel interference near the cell coverage boundaries has a significant impact on the signal reception performance. This paper addresses an approach to efficiently mitigate the effect of downlink co-channel interference when multi-antenna terminals are used in cellular environments, by proposing a signal detection strategy combined with a system-level coordination for dynamic frequency reuse. We demonstrate the utilization of multi-antennas to perform spatial demultiplexing of both the desired signal and interfering signals from adjacent cells results in significant improvement of spectral efficiency compared to the maximal ratio combining (MRC) performance, especially when an appropriate frequency reuse based on the traffic loading condition is coordinated among cells. Both analytic expressions for the capacity and experimental results using the adaptive modulation and coding (AMC) are used to confirm the performance gain. The robustness of the proposed scheme against varying operational conditions such as the channel estimation error and shadowing effects are also verified by simulation results.

하향 링크 셀룰러 시스템의 Eigen-Beamforming 전송을 위한 적응적 인접 셀 간섭 완화 방법 (An Adaptive Adjacent Cell Interference Mitigation Method for Eigen-Beamforming Transmission in Downlink Cellular Systems)

  • 장재원;김세진;김재원;성원진
    • 한국전자파학회논문지
    • /
    • 제20권3호
    • /
    • pp.248-256
    • /
    • 2009
  • MIMO(Multiple-Input Multiple-Output) 시스템에서 EB(Eigen-Beamforming)는 MIMO 채 널의 특이 값 분해(Singular Value Decomposition: SVD)를 통하여 수신기의 유효 신호 대 잡음비(Signal-to-Interference Plus Noise Ratio: SI-NR)를 최대화하는 빔을 형성하는 방법으로써 널리 활용되고 있으나, 인접 셀 간섭 신호의 영향으로 셀 경계에 위치한 단말기의 신호 검출 성능은 급격히 열화되고 전송 효율은 감소하게 된다. 본 논문에서는 EB 전송을 활용하는 경우, 적응적 인접 셀 간섭 완화 방안을 제시하고 그 수신 성능을 평가한다. 특히, EB 전송을 이용하여 기지국예서 전송된 신호를 단말기가 수신할 때, 최대의 유효 신호 대 간섭 잡음비를 얻기 위한 OC(Optimum Combining) 및 MMSE-ISD(Minimum Mean-Squared Error for Intercell Spatial Demultiplexing)를 적응적으로 사용하기 위한 기준을 제시하고 유효 신호 대 간섭 잡음비 및 전송 용량 측면의 수신 성능을 분석한다. 제안하는 적응적 수신 방식은 수신 빔포밍 벡터만을 사용하는 기존의 EB 수신 방식 대비 평균 전송 용량 측면에서 향상된 성능을 보이며, 셀 경계 지역에 단말기가 위치할 경우 최대 2 bps/Hz 성능 개선을 가져온다.

Analysis of Macro-Diversity in LTE-Advanced

  • Kim, Gun-Yeob Peter;Lee, Jung-Ah C.;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권9호
    • /
    • pp.1596-1612
    • /
    • 2011
  • Coordinated Multi-Point (CoMP) transmission / reception is being studied in Long Term Evolution-Advanced (LTE-A) for future evolution of the $3^{rd}$ Generation Partnership Project (3GPP) LTE. Support of soft handover is essential for improving the performance of cell edge users. CoMP provides a natural framework for enabling soft handover in the LTE system. This paper evaluates the soft handover gain in LTE-A downlink. Mathematical analysis of signal to interference plus noise ratio (SINR) gain and the handover margins for soft handover and hard handover are derived. CoMP system model is developed and an inter-cell and intra-cell interference model is derived, taking into account the pathloss, shadowing, cell loading, and traffic activity. Reference signal received power (RSRP) is used to define the triggers and the measurements for soft handover. Our results indicate that parameter choices such as handover margin and the CoMP set size impact CoMP performance gain.

기지국 안테나 배열을 이용한 FDD 방식의 무선통신 시스템에서 송신 빔 형성을 위한 주파수 변환 방식 (Frequency translation approach for transmission beamforming in FDD wireless communication systems with basestation arrays)

  • 오성근
    • 전자공학회논문지S
    • /
    • 제34S권5호
    • /
    • pp.1-14
    • /
    • 1997
  • We consider transmission beamforming techniques for frequency-division-duplex (FDD) wireless communication systems using adaptive arrays to improve the signal quality of the array transmission link. We develop a simple effective transmission beamforming technique based on an approximated frequency tranlsation (AFT) to derive the tranmsiion beamforming weights from the uplink channel vector. This technique exploits the invariance of the short-time averaged fast fading statistics to small frequency translations. A simple approximate relationship that relates the transmission channel vector to the reception channel vector is derived. We have developed its practical alternative in which the frequency translation of the channel vector is performed at the principal angle of arrival (AOA) of the u;link synthestic angular spectrum instead of the mean AOA. To analyze the performance of the proposed methods, we consider the power loss incurred by applying the estimated channel vector instead of the true downlink channel vector. The performance is analyzed as a function of the mean AOA, the angular spread, the number of elements, frequncy difference between the uplink and the downlink, and the angle distribution. Their performance is also compared with that of the direct weight reuse method and the AOA based methods.

  • PDF

Measurement of Carrier-to-Noise due to Sun Interference Effect on C-band for THAICOM 2 Down-link Station at Mung, Khon-kaen

  • A. Waisontia;K. Charouensuk;S.Noppanakeepong;Lee, N. laruji;N. Heammkorn;Y. Moriya
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.2043-2046
    • /
    • 2002
  • This paper studies on Sun interference effects or Sun outage effects on C-band satellite reception signal for THAICOM2. The THAICOM2 satellite is at 78.5 degree East 〔co-located with THAICOM3〕. The down link station was located in Khon-kaen, longitude 102.83 degree East and latitude 16.43 degree North. The antenna diameter is 4.6 meters for C-band downlink station. Total 9 times of sun interference events were occurred during summer and fall of 2001 and these about 53 minutes altogether. The Maximum CM degradation of the THAICOM2 system was around 11 dB. The Sun interference events of 53 minutes of one year are 0.0122 percents of the C-band contact time when 21 hours of contact time is used f3r broadcasting a day.

  • PDF

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.