DOI QR코드

DOI QR Code

Design of the Magnetic Field Sensing System for Downlink Signal Reception and Interference Cancelling for Through-the-Earth Communication

  • Zhao, Peng (College of Electronic Engineering, Naval University of Engineering) ;
  • Jiang, Yu-zhong (College of Electronic Engineering, Naval University of Engineering) ;
  • Zhang, Shu-xia (College of Electronic Engineering, Naval University of Engineering) ;
  • Ying, Wen-wei (College of Electronic Engineering, Naval University of Engineering)
  • Received : 2016.07.07
  • Accepted : 2016.08.16
  • Published : 2016.09.30

Abstract

A magnetic field sensing system with a single primary sensor and multiple reference sensors deployed locally and orthogonally, was proposed for downlink signal reception and interference cancelling for Through-the-Earth Communication (TEC). This paper mathematically analyzes a design optimization process for a search coil magnetometer (SCM), and applies that process to minimize the bandwidth of the primary SCM for TEC signal reception and the volume of reference SCMs for multiple distributions. The primary SCM achieves a 3-dB bandwidth of 7 Hz, a sensitivity threshold of 120 fT/${\surd}$Hz, and a volume of $2.32{\times}10^{-4}m^3$. The entire sensing system volume is as small as $10^{-2}m^3$. Experiments with interference from industrial frequency harmonics demonstrated an average of 36 dB and 18 dB improvements in signal-to-interference ratio and signal-to-interference plus noise ratio, respectively, using multichannel recursive-least-squares algorithm. Thus, the proposed sensing system can reduce the interference effectively and allows reliable downlink signal reception.

Keywords

References

  1. M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, IEEE Trans. Ind. Appl. 48, 1700 (2012). https://doi.org/10.1109/TIA.2012.2209853
  2. F. H. Raab, IEEE Trans. Ind. Appl. 24, 212 (1988). https://doi.org/10.1109/28.2858
  3. F. H. Raab, IEEE Trans. Comm. 43, 2995 (1995). https://doi.org/10.1109/26.477502
  4. D. Madurasinghe and E. O. Tuck, IEEE J. Oceanic Eng. 19, 193 (1994). https://doi.org/10.1109/48.286641
  5. Zhang Jiawei, Jiang Runxiang, and Gong Shenguang, Journal of Harbin Engineering University 35, 931 (2014).
  6. Lincan Yan, J. A. Waynert, and C. Sunderman, IEEE Trans. Ind. Appl. 49, 1979 (2013). https://doi.org/10.1109/TIA.2013.2260116
  7. V. Bataller, A. Munoz, P. M. Gaudo, A. Mediano, J. A. Cuchi, and J. L. Villarroel, Radio Sci. 45, RS6015 (2010).
  8. V. Bataller, A. Munoz, P. Molina, A. Mediano, J. A. Cuchi, and J. L. Villarroel, J. Comm. 4, 284 (2009).
  9. B. Yan, W. H. Zhu, L. S. Liu, K. Liu, and G. Y. Fang, IEEE Sens. J. 15, 1139 (2015). https://doi.org/10.1109/JSEN.2014.2359228
  10. S. Tumanski, Meas. Sci. Technol. 18, R31 (2007). https://doi.org/10.1088/0957-0233/18/3/R01
  11. H. C. Seran and P. Fergeau, Rev. Sci. Instrum. 76, 044502-1 (2005). https://doi.org/10.1063/1.1884026
  12. A. Grosz and E. Paperno, IEEE Sens. J. 12, 2719 (2012). https://doi.org/10.1109/JSEN.2012.2202179
  13. B. Yan, W. H. Zhu, L. S. Liu, K. L. and G. Y. Fan, IEEE Trans. Magn. 49, 5294 (2013). https://doi.org/10.1109/TMAG.2013.2264821
  14. S. Bae, Y. K. Hong1, J. Lee, J. Park, J. Jalli, G. S. Abo1, H. M. Kwon, and C. K. K. Jayasooriya, J. Magn. 18, 43 (2013). https://doi.org/10.4283/JMAG.2013.18.1.043
  15. D. A. Chrissan, Statistical Analysis and Modeling of Low-Frequency Radio Noise and Improvement of Low-Frequency Communications, Tech. Rep., The Off. of Nav. Res., Washington D. C. (1998).
  16. F. H. Raab, Radio Sci. 45, 1 (2010).
  17. A. C. Fraser-Smith, Low-Frequency Radio Noise, in Handbook of Atmospheric Electrodynamics, CRC Press, Boca Raton (1995) pp. 290-310.
  18. M. Shao and C. L. Nikias, Proc. IEEE 81, 986 (1993). https://doi.org/10.1109/5.231338
  19. B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, Jr. and R. C. Goodlin, Proc. IEEE 63, 1692 (1975). https://doi.org/10.1109/PROC.1975.10036
  20. A. Rhouni, G. Sou, P. Leroy, and C. Coillot, IEEE Sens. J. 13, 159 (2013). https://doi.org/10.1109/JSEN.2012.2211347
  21. C. Coillot, J. Moutoussamy, P. Leroy, G. Chanteur, and A. Roux, Sens. Lett. 5, 167 (2007). https://doi.org/10.1166/sl.2007.050
  22. J. Vrbancich, Magnetic Field Distribution and Design of Helmholtz Coils, Tech. Rep., Materials Research Laboratory, Maribyrnong (1991).
  23. W. M. Frix, G. G. Karady, and B. A. Venetz, IEEE Trans. Power Delivery 9, 100 (1994). https://doi.org/10.1109/61.277684
  24. K. Mohamadabadi and M. Hillion, IEEE Sens. J. 14, 3076 (2014). https://doi.org/10.1109/JSEN.2014.2322396
  25. Low-Noise JFETs--Superior Performance to Bipolars. Online, Available: http://www.vishay.com/docs/70599/70599.pdf.
  26. Paulo S. R. Diniz, Adaptive Filtering Algorithms and Practical Implementation (Fourth Edition), Springer, New York (2013) pp. 209-213.