• Title/Summary/Keyword: double-curvature

Search Result 104, Processing Time 0.029 seconds

ROTATIONAL HYPERSURFACES CONSTRUCTED BY DOUBLE ROTATION IN FIVE DIMENSIONAL EUCLIDEAN SPACE 𝔼5

  • Erhan Guler
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.585-597
    • /
    • 2023
  • We introduce the rotational hypersurface x = x(u, v, s, t) constructed by double rotation in five dimensional Euclidean space 𝔼5. We reveal the first and the second fundamental form matrices, Gauss map, shape operator matrix of x. Additionally, defining the i-th curvatures of any hypersurface via Cayley-Hamilton theorem, we compute the curvatures of the rotational hypersurface x. We give some relations of the mean and Gauss-Kronecker curvatures of x. In addition, we reveal Δx=𝓐x, where 𝓐 is the 5 × 5 matrix in 𝔼5.

Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump (양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구)

  • An, Young-Joon;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

A Study on the Prediction of Welding Distortion of Vacuum Vessel during Fabrication Process (진공 용기 제작시 공정별 변형 예측에 관한 연구)

  • Lee, Dong-Ju;Kim, Ha-Geun;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.96-96
    • /
    • 2009
  • The purpose of this study is to clarify the transitional behavior and main factor of excessive welding distortion caused by fabrication process of STS 304 vacuum vessel having double curvature for the efficient quality control of vacuum vessel. In order to do it, the predictive equations of the welding distortion in simple weldment of vacuum vessel were established by conventional finite element analysis. And the principal factor controlling the welding distortion was identified by evaluating the welding distortion of vacuum vessel in each fabrication process with FEA and simplified thermo elastic method. Based on the results, the principal factors of distortion of vacuum vessel were clarified as angular distortion and transverse shrinkage which are a source of excessive out-of plane distortion in the double curved vacuum vessel. It was expected that the FE analysis results of this study could contribute to establish the proper control method of welding distortion for double curved vacuum vessel.

  • PDF

Numerical Approach for a Partial CFST Column using an Improved Bond-Slip Model (개선된 부착슬립 모델을 적용한 부분 CFST 기둥의 수치해석)

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, a numerical approach for evaluating the resisting capacity of a partial concrete-filled steel tube (CFST) column is introduced. By strengthening the plastic hinge part of a traditional reinforced concrete column with a steel tube, a partial CFST shows a similar bending moment capacity as that of a full CFST column but with reduced material cost. To conduct an elaborate numerical analysis of a partial CFST column, an improved bond-slip model is applied to a finite element (FE) model at the interface between the steel tube and in-filled concrete. This numerical model is verified through the results of a double curvature bending-compression test. A parametric study with the proposed numerical model is used to obtain the load moment interaction diagrams for evaluating the resisting capacity based on various dimensions. Finally, the required strengthening length is estimated for each degree of thickness of the steel tube, and the failure mechanism of the partial CFST column based on the dimensions of the steel tube are identified.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Evaluation of Knee Joint after Double-Bundle ACL Reconstruction with Three-Dimensional Isotropic MRI

  • Jung, Min ju;Jeong, Yu Mi;Lee, Beom Goo;Sim, Jae Ang;Choi, Hye-Young;Kim, Jeong Ho;Lee, Sheen-Woo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.95-104
    • /
    • 2016
  • Purpose: To evaluate the knee joint after double-bundle anterior cruciate ligament (ACL) reconstruction with three-dimensional (3D) isotropic magnetic resonance (MR) image, and to directly compare the ACL graft findings on 3D MR with the clinical results. Materials and Methods: From January 2009 to December 2014, we retrospectively reviewed MRIs of 39 patients who had reconstructed ACL with double bundle technique. The subjects were examined using 3D isotropic proton-density sequence and routine two-dimensional (2D) sequence on 3.0T scanner. The MR images were qualitatively evaluated for the intraarticular curvature, graft tear, bony impingement, intraosseous tunnel cyst, and synovitis of anteromedial and posterolateral bundles (AMB, PLB). In addition anterior tibial translation, PCL angle, PCL ratio were quantitatively measured. KT arthrometric values were reviewed for anterior tibial translation as positive or negative. The second look arthroscopy results including tear and laxity were reviewed. Results: Significant correlations were found between an AMB tear on 3D-isotropic proton density MR images and arthroscopic proven AMB tear or laxity (P < 0.05). Also, a significant correlation was observed between increased PCL ratio on 3D isotropic MRI and the arthroscopic findings such as tear, laxities of grafts (P < 0.05). KT arthrometric results were found to be significantly correlated with AMB tears (P < 0.05) and tibial tunnel cysts (P < 0.05). Conclusion: An AMB tear on 3D-isotropic MRI was correlated with arthroscopic results qualitatively and quantitatively. 3D isotropic MRI findings can aid the evaluation of ACL grafts after double bundle reconstruction.

Characteristics of Flow Field and IR of Double Serpentine Nozzle Plume for Varying Cross Sectional Areas and Flight Conditions in UCAV (Double Serpentine 노즐의 단면적과 비행조건 변화에 따른 UCAV의 플룸 유동장 및 IR 특성 연구)

  • Lee, Yu-Ryeol;Lee, Ji-Won;Shin, Chang-Min;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.689-698
    • /
    • 2021
  • The development of modern warfare detection technology is increasingly threatening the survivability of aircraft. Among them, IR-seeking missiles greatly affect the survivability of aircraft and are a main factor that reduces the success rate of aircraft missions. In order to increase aircraft survivability, studies on shape-modifying nozzles with added curvature are being actively conducted. In this study, we selected a double serpentine nozzle among shape-modifying nozzles to increase aircraft survivability. We then investigated the effects of the location of the maximum area change rate of the nozzle. It was confirmed that the location of the change rate of area affects the thrust and exit temperature of the nozzle. In addition, it was shown that the thrust penalty was reduced as the position of the change rate of the maximum area was located at the rear of the nozzle.

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Vertebral Anomalies of Five Different Juvenile of Cyprinid Fishes from Kumho River (금호강(낙동강)산 잉어과 어류 5종에서 치어의 척추골 변형)

  • Yang, Hong-Jun;Kim, Eun-Kyung
    • Korean Journal of Ichthyology
    • /
    • v.9 no.1
    • /
    • pp.114-120
    • /
    • 1997
  • Frequencies and the types of abnormal vertebrae in the juvenile of five cyprinid fishes collected from the Kumho River during 1995 and 1996 were examined. Types of vertebral anomalies in investigated species were spinal curvature, fused vertebrae, helical sutures of cetera and abnormal vertebrae with one or two additional spines. The frequencies and the types of vertebral anomalies were different among the species. Of all the examined species, the type with one or two additional spines showed the highest frequencies, 11.72~12.11%. The frequencies of fused vertebrae was 4.45~7.68%. Thes two types of vertebral anomalies were observed in all species. Among the several types of fused vertebrae, the frequencies of double fused vertebrae were higher than those of other types. Also, the incidence of fused vertebrae located in the caudal region of vertebral column was much higher than that in other regions. The percentages of spinal curvature and helical sutures of vertebrae in the investigated species were 0.02~0.15% and 0.02%, respectively. Among the examined specimens, vertebral anomalies include fused vertebrae and one or two additional spines were shown in the three species, Korean slender gudgeon (Squalidus gracilis majimae), False dace (Pseudorasbora parva) and Crucian carp (Carassius auratus). In addition to the two vertebral anomalies, spinal curvature was shown in the Korean gudgeon (Squalidus chankaensis tsuchigae). Dark chub (Zacco temmincki) had fused vertebrae, one or two additional spines, spinal curvature, and helical sutures of vertebrae. This species has the most variable vertebral anomalies. Frequencies of fused vertebrae and one or two additional spines in the all tested fishes were not related with their standard lengths measured. However, spinal curvature and helical sutures of vertebrae were shown only in the specimens smaller than 20mm in standard length.

  • PDF

Reflection of Plane Shock Wave over Concave and Convex Walls (오목, 볼록면에서 평면충격파의 반사)

  • JEON, Heung-Kyun;KWON, Jin-Kyung;KWON, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1473-1480
    • /
    • 1999
  • In the case of Impingement of plane moving shock wave over concave or convex double wedges (pseudo-stationary flow) and cylindrical walls (truly non-stationary flow), it Is expected that there are transitions from regular reflection to Mach reflection or vice versa In shock wave reflections. In these connections, it is necessary to verify the various of reflection process and transition angle for the reflection problems In double wedges, and to verify the transition angle, effects of curvature radius and initial wall angle on it for the reflection problems In cylindrical walls. Especially, we focused our attention to confirm the existence of hysteresis phenomenon induced by the different transition processes, and Neumann paradox, which is a small discrepancy between theoretical and experimental transition angles. Experiments were carried out by using the shock tube of $6{\times}6cm^2$, and high speed photographic technique consisted of delay unit, triggering system, light source of Xe lamp and so on was used for flow visualization.