DOI QR코드

DOI QR Code

Characteristics of Flow Field and IR of Double Serpentine Nozzle Plume for Varying Cross Sectional Areas and Flight Conditions in UCAV

Double Serpentine 노즐의 단면적과 비행조건 변화에 따른 UCAV의 플룸 유동장 및 IR 특성 연구

  • Lee, Yu-Ryeol (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Lee, Ji-Won (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Shin, Chang-Min (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Myong, Rho-Shin (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2021.04.08
  • Accepted : 2021.06.17
  • Published : 2021.08.01

Abstract

The development of modern warfare detection technology is increasingly threatening the survivability of aircraft. Among them, IR-seeking missiles greatly affect the survivability of aircraft and are a main factor that reduces the success rate of aircraft missions. In order to increase aircraft survivability, studies on shape-modifying nozzles with added curvature are being actively conducted. In this study, we selected a double serpentine nozzle among shape-modifying nozzles to increase aircraft survivability. We then investigated the effects of the location of the maximum area change rate of the nozzle. It was confirmed that the location of the change rate of area affects the thrust and exit temperature of the nozzle. In addition, it was shown that the thrust penalty was reduced as the position of the change rate of the maximum area was located at the rear of the nozzle.

현대 전장의 탐지기술 발달로 인해 항공기의 생존성이 크게 위협받고 있다. 그중 적외선(IR) 추적 미사일은 항공기의 생존성에 큰 영향을 끼치며, 항공기 임무 성공률을 저하시키는 주된 요인이다. 항공기 생존성을 증가시키기 위하여 곡률을 추가한 형상 변형 노즐에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 항공기 생존성을 증가시키기 위한 형상 변형 노즐 중 Double Serpentine 노즐을 선정한 다음, 노즐의 최대 면적변화율의 위치 효과를 분석하였다. 노즐의 최대 면적변화율이 노즐의 추력과 출구의 평균 온도에 영향을 끼치는 것을 확인하였다. 또한 최대 면적변화율이 노즐 후방에 위치함에 따라 추력 페널티가 줄어드는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 국방과학연구소가 지원하는 항공기 생존성 향상을 위한 추진계통 IR 신호 감소 형상설계 파라메트릭 연구(UD180038JD) 사업의 일환으로 수행되었습니다.

References

  1. Heikel, J., Electronic Warfare Self-protection of Battlefield Helicopters: A Holistic View, Ph.D. Dissertation, Helsinki University of Technology, 2005.
  2. Ball, R., The Fundamental of Aircraft Combat Survivability: Analysis and Design, American Institute of Aeronautics and Astronautics, 2003.
  3. Mahulikar, S. P., Hemant, R. S. and Arvind, R., "Infrared signature studies of aerospace vehicles," Progress in Aerospace Science, Vol. 43, 2007, pp. 218~245. https://doi.org/10.1016/j.paerosci.2007.06.002
  4. White, J. R., Aircraft Infrared Principles, Signatures, Threats, and Countermeasures, Naval Air Warfare Center Weapons Division, No. NAWCWDTP-8773, 2012.
  5. Tompson, J. and Birk, A. M., "Design of an infrared signature suppressor for the Bell 205 (UH-1H) helicopter Part 1: aerothermal design," 11th CASI Propulsion Symposium, 2010.
  6. Scott, H., Dennis, K. M. and Morris, P. J., "Aft deck effects on the aeroacoustics of dual stream supersonic jets," AIAA Scitech 2020 Forum, 2020, pp. 1249~1267.
  7. Arvind, R. G., Buijtenen, J. P. and Mahulikar, S. P., "The effect bypass ratio on aircraft plume infrared signatures," AIAA ISBE-1194, 2009.
  8. Chen, W., Wang, Z., Zhou, L., Sun, X. and Shi, J., "Influences of shield ratio on the infrared signature of serpentine nozzle," Journal of Aerospace Science and Technology, Vol. 71, 2017, pp. 1~13. https://doi.org/10.1016/j.ast.2017.09.007
  9. Shan, Y., Zhou, X., Tan, X., Zhang, J. and Wu, Y., "Parametric design method and performance analysis of double S-shaped nozzles," International Journal of Aerospace Engineering, Vol. 2019, 2019, pp. 1~24.
  10. Sun, X., Wang, Z., Zhou, L., Shi, J. and Liu, Z., "Experimental and computational investigation of double serpentine nozzle," Journal of Aerospace Engineering, Vol. 229, No. 11, 2015, pp. 2035~2050.
  11. Sun, P., Zhou, L., Wang, Z. and Sun, X., "Effect of serpentine nozzle on bypass ratio of turbofan engine exhaust," Joint Propulsion Conference, 2018, pp. 4744~4758.
  12. Chae, J. H., Lee, J. W., Ha, N. K., Kim, D. G., Jang, H. S. and Myong, R. S., "Computational analysis of effects of thermal flow field and chemical components on the IR signature in the exhaust plume of a micro jet engine," Journal of Computational Fluids Engineering, Vol. 24, No. 3, 2019, pp. 101~111. https://doi.org/10.6112/kscfe.2019.24.3.101
  13. Lee, H. J., Lee, J. H., Myong, R. S., Kim, S. M., Choi, S. M. and Kim, W. C., "Computational and experimental investigation of thermal flow field of micro turbojet engine with various nozzle configurations," Journal of The Korean Society for Aeronautical and Space Science, Vol. 46, No. 2, 2018, pp. 150~158.
  14. Lee, H. J., An, C. H., Myong, R. S., Choi, S. M. and Kim, W. C., "Computational investigation of nozzle flowfield in a micro turbojet engine and its scaling characteristics," Journal of Computational Fluids Engineering, Vol. 22, No. 1, 2017, pp. 43~50. https://doi.org/10.6112/kscfe.2017.22.1.043
  15. An, C. H., Kang, D. W., Baek, S. T. and Myong, R. S., "Analysis of plume infrared signatures of S-shaped nozzle configurations of aerial vehicles," Journal of Aircraft, Vol. 53, No. 6, 2016, pp. 1768~1778. https://doi.org/10.2514/1.C033685
  16. Lee, J. H., Lee, H. J., Myong, R. S., Choi, S. M. and Kim, W. C., "Investigation of IR survivability of unmanned combat aerial vehicle against surface-to-air missile," Journal of The Korean Society for Aeronautical and Space Science, Vol. 45, No. 12, 2017, pp. 1084~1093.
  17. ANSYS Fluent 2019 R2 User's Guide, ANSYS Inc., 2019.
  18. Lee J. H., Lee H. J., Yang B. J., Myong R. S. and Kim W. C., "Numerical analysis of thermal flow field according to shape of exhaust nozzle of UCAV and jet on/off," Journal of Computational Fluids Engineerings, Vol. 23, No. 1, 2018, pp. 77~85. https://doi.org/10.6112/kscfe.2018.23.1.077
  19. Park, G. S., Kim, S. M., Choi, S. M., Myong, R. S. and Kim, W. C., "Experimental study of a micro turbo jet engine performance and IR signal with nozzle configuration," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 5, 2016, pp. 1~8. https://doi.org/10.6108/KSPE.2016.20.5.001
  20. Kang, D. W., Kim, J. W., Myong, R. S. and Kim, W. C., "Computational investigation of the effect of UAV engine nozzle configuration on infrared signature," Journal of Korean Society for Aeronautical and Space Science, Vol. 41, No. 10, 2013, pp. 779~787. https://doi.org/10.5139/JKSAS.2013.41.10.779