References
- K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, and G. Ozturk, Vranceanu surface in 𝔼4 with pointwise 1-type Gauss map, Indian J. Pure Appl. Math. 42 (2011), no. 1, 41-51. https://doi.org/10.1007/s13226-011-0003-y
- K. Arslan, B. K. Bayram, B. Bulca, and G. Ozturk, Generalized rotation surfaces in 𝔼4, Results Math. 61 (2012), no. 3, 315-327. https://doi.org/10.1007/s00025-011-0103-3
- K. Arslan, B. Bulca, B. Kilic, Y. H. Kim, C. Murathan, and G. Ozturk, Tensor product surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 48 (2011), no 3, 601-609. https://doi.org/10.4134/BKMS.2011.48.3.601
- K. Arslan and V. Milousheva, Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math. 20 (2016), no 2, 311-332. https://doi.org/10.11650/tjm.20.2016.5722
- K. Arslan, A. Sutveren, and B. Bulca, Rotational λ-hypersurfaces in Euclidean spaces, Creat. Math. Inform. 30 (2021), no 1, 29-40. https://doi.org/10.37193/CMI.2021.01.04
- E. Bour, Theorie de la deformation des surfaces. J. de l.Ecole Imperiale Polytechnique 22 (1862), no 39, 391-148.
- B. Y. Chen, On submanifolds of finite type, Soochow J. Math. 9 (1983), 65-81.
- B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
- B. Y. Chen, Finite Type Submanifolds and Generalizations, University of Rome, Rome, Italy, 1985.
- B. Y. Chen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J. 8 (1985), 358-374. https://doi.org/10.2996/kmj/1138037104
- B. Y. Chen, E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Differential geometry of 1-type submanifolds and submanifolds with 1-type Gauss map, Int. Elec. J. Geom. 16 (2023), no 1, 4-47. https://doi.org/10.36890/iejg.1216024
- S. Y. Cheng, and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204. https://doi.org/10.1007/BF01425237
- F. Dillen, J. Pas, and L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), 10-21. https://doi.org/10.2996/kmj/1138039155
- M. P. Do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J. 34 (1982), 351-367.
- G. Ganchev and V. Milousheva, General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math. 38 (2014), 883-895. https://doi.org/10.3906/mat-1312-10
- E. Guler, Fundamental form IV and curvature formulas of the hypersphere, Malaya J. Mat. 8 (2020), no 4, 2008-2011. https://doi.org/10.26637/MJM0804/0116
- E. Guler, Rotational hypersurfaces satisfying ΔIR = AR in the four-dimensional Euclidean space, J. Polytech. 24 (2021), no 2, 517-520. https://doi.org/10.2339/politeknik.670333
- E. Guler, H. H. Hacisalihoglu, and Y. H. Kim, The Gauss map and the third LaplaceBeltrami operator of the rotational hypersurface in 4-space, Symmetry 10 (2018), no 9, 1-12. https://doi.org/10.3390/sym10090398
- E. Guler, M. Magid, and Y. Yayli, Laplace-Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry Phys. 41 (2016), 77-95. https://doi.org/10.7546/jgsp-41-2016-77-95
- E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Birotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space 𝔼4, Turkish J. Math., 46 (2022), no 6, 2167-2177. https://doi.org/10.55730/1300-0098.3261
- E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Bi-rotational hypersurface satisfying Δx = Ax in pseudo-Euclidean space 𝔼42, to appear in TWMS J. Pure Appl. Mathematics.
- E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Bi-rotational hypersurface with Δx = Ax in 4-space, Facta Universitatis (Nis) Ser. Math. Inform. 37 (2022), no 5, 917-928.
- E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Bi-rotational hypersurface satisfying ΔIIIx = Ax in 4-space, Honam Math. J. 44 (2022), no 2, 219-230.
- W. Kuhnel, Differential Geometry. Curves-Surfaces-Manifolds, Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.
- Th. Hasanis and Th. Vlachos, Hypersurfaces in 𝔼4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145-169. https://doi.org/10.1002/mana.19951720112
- H. B. Lawson, Lectures on Minimal Submanifolds, 2nd ed., Mathematics Lecture Series 9, Publish or Perish, Inc., Wilmington, DE, USA, 1980.
- M. Magid, C. Scharlach, and L. Vrancken, Affine umbilical surfaces in ℝ4, Manuscr Math. 88 (1995), 275-289. https://doi.org/10.1007/BF02567823
- C. Moore, Surfaces of rotation in a space of four dimensions, Ann. Math. 21 (1919), 81-93. https://doi.org/10.2307/2007223
- C. Moore, Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc. 26 (1920), 454-460. https://doi.org/10.1090/S0002-9904-1920-03336-7
- C. Scharlach, Affine geometry of surfaces and hypersurfaces in ℝ4, Symposium on the Differential Geometry of Submanifolds, France, (2007), 251-256.