DOI QR코드

DOI QR Code

ROTATIONAL HYPERSURFACES CONSTRUCTED BY DOUBLE ROTATION IN FIVE DIMENSIONAL EUCLIDEAN SPACE 𝔼5

  • Erhan Guler (Department of Mathematics, Faculty of Sciences, Bartin University, Kutlubey Campus)
  • Received : 2023.02.15
  • Accepted : 2023.08.23
  • Published : 2023.12.20

Abstract

We introduce the rotational hypersurface x = x(u, v, s, t) constructed by double rotation in five dimensional Euclidean space 𝔼5. We reveal the first and the second fundamental form matrices, Gauss map, shape operator matrix of x. Additionally, defining the i-th curvatures of any hypersurface via Cayley-Hamilton theorem, we compute the curvatures of the rotational hypersurface x. We give some relations of the mean and Gauss-Kronecker curvatures of x. In addition, we reveal Δx=𝓐x, where 𝓐 is the 5 × 5 matrix in 𝔼5.

Keywords

References

  1. K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, and G. Ozturk, Vranceanu surface in 𝔼4 with pointwise 1-type Gauss map, Indian J. Pure Appl. Math. 42 (2011), no. 1, 41-51. https://doi.org/10.1007/s13226-011-0003-y
  2. K. Arslan, B. K. Bayram, B. Bulca, and G. Ozturk, Generalized rotation surfaces in 𝔼4, Results Math. 61 (2012), no. 3, 315-327. https://doi.org/10.1007/s00025-011-0103-3
  3. K. Arslan, B. Bulca, B. Kilic, Y. H. Kim, C. Murathan, and G. Ozturk, Tensor product surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 48 (2011), no 3, 601-609. https://doi.org/10.4134/BKMS.2011.48.3.601
  4. K. Arslan and V. Milousheva, Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math. 20 (2016), no 2, 311-332. https://doi.org/10.11650/tjm.20.2016.5722
  5. K. Arslan, A. Sutveren, and B. Bulca, Rotational λ-hypersurfaces in Euclidean spaces, Creat. Math. Inform. 30 (2021), no 1, 29-40. https://doi.org/10.37193/CMI.2021.01.04
  6. E. Bour, Theorie de la deformation des surfaces. J. de l.Ecole Imperiale Polytechnique 22 (1862), no 39, 391-148.
  7. B. Y. Chen, On submanifolds of finite type, Soochow J. Math. 9 (1983), 65-81.
  8. B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
  9. B. Y. Chen, Finite Type Submanifolds and Generalizations, University of Rome, Rome, Italy, 1985.
  10. B. Y. Chen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J. 8 (1985), 358-374. https://doi.org/10.2996/kmj/1138037104
  11. B. Y. Chen, E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Differential geometry of 1-type submanifolds and submanifolds with 1-type Gauss map, Int. Elec. J. Geom. 16 (2023), no 1, 4-47. https://doi.org/10.36890/iejg.1216024
  12. S. Y. Cheng, and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204. https://doi.org/10.1007/BF01425237
  13. F. Dillen, J. Pas, and L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), 10-21. https://doi.org/10.2996/kmj/1138039155
  14. M. P. Do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J. 34 (1982), 351-367.
  15. G. Ganchev and V. Milousheva, General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math. 38 (2014), 883-895. https://doi.org/10.3906/mat-1312-10
  16. E. Guler, Fundamental form IV and curvature formulas of the hypersphere, Malaya J. Mat. 8 (2020), no 4, 2008-2011. https://doi.org/10.26637/MJM0804/0116
  17. E. Guler, Rotational hypersurfaces satisfying ΔIR = AR in the four-dimensional Euclidean space, J. Polytech. 24 (2021), no 2, 517-520. https://doi.org/10.2339/politeknik.670333
  18. E. Guler, H. H. Hacisalihoglu, and Y. H. Kim, The Gauss map and the third LaplaceBeltrami operator of the rotational hypersurface in 4-space, Symmetry 10 (2018), no 9, 1-12. https://doi.org/10.3390/sym10090398
  19. E. Guler, M. Magid, and Y. Yayli, Laplace-Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry Phys. 41 (2016), 77-95. https://doi.org/10.7546/jgsp-41-2016-77-95
  20. E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Birotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space 𝔼4, Turkish J. Math., 46 (2022), no 6, 2167-2177. https://doi.org/10.55730/1300-0098.3261
  21. E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Bi-rotational hypersurface satisfying Δx = Ax in pseudo-Euclidean space 𝔼42, to appear in TWMS J. Pure Appl. Mathematics.
  22. E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Bi-rotational hypersurface with Δx = Ax in 4-space, Facta Universitatis (Nis) Ser. Math. Inform. 37 (2022), no 5, 917-928.
  23. E. Guler, Y. Yayli, and H. H. Hacisalihoglu, Bi-rotational hypersurface satisfying ΔIIIx = Ax in 4-space, Honam Math. J. 44 (2022), no 2, 219-230.
  24. W. Kuhnel, Differential Geometry. Curves-Surfaces-Manifolds, Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.
  25. Th. Hasanis and Th. Vlachos, Hypersurfaces in 𝔼4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145-169. https://doi.org/10.1002/mana.19951720112
  26. H. B. Lawson, Lectures on Minimal Submanifolds, 2nd ed., Mathematics Lecture Series 9, Publish or Perish, Inc., Wilmington, DE, USA, 1980.
  27. M. Magid, C. Scharlach, and L. Vrancken, Affine umbilical surfaces in ℝ4, Manuscr Math. 88 (1995), 275-289. https://doi.org/10.1007/BF02567823
  28. C. Moore, Surfaces of rotation in a space of four dimensions, Ann. Math. 21 (1919), 81-93. https://doi.org/10.2307/2007223
  29. C. Moore, Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc. 26 (1920), 454-460. https://doi.org/10.1090/S0002-9904-1920-03336-7
  30. C. Scharlach, Affine geometry of surfaces and hypersurfaces in ℝ4, Symposium on the Differential Geometry of Submanifolds, France, (2007), 251-256.