• 제목/요약/키워드: double capacitor

검색결과 265건 처리시간 0.025초

EDLC의 양방향 DC/DC Converter를 이용한 동적 전압보상시스템 (Dynamic Voltage Compensation System Using Bi-directional DC/DC Converter of Electric Double-Layer Capacitor)

  • 손진근;이상철;이공희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.108-111
    • /
    • 2007
  • A novel voltage sag compensator with hi-directional DC/DC converter of Electric double layer capacitor is proposed. Recently, the double-layer capacitor which is drawn attention as a new energy storage element has a lot of advantage such as no maintenance, long lifetime and quick charge/discharge characteristics with large current. This DC/DC converter is used to control the charging current to the double-layer capacitor and also used to keep the DC link voltage constant for discharge of the double-layer capacitor. Therefore, the proposed DC/DC converter has the high-efficiency controller, dynamic compensator of voltage sag is driven by this converter. Finally, experimental results show the validity of the control scheme and the ability of the dynamic voltage compensator.

  • PDF

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.

공융 갈륨-인듐 액체금속 전극 기반 전기이중층 커패시터 (An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes)

  • 김지혜;구형준
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.627-634
    • /
    • 2018
  • Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabricate a capacitor based on eutectic gallium-indium (EGaIn) liquid metal and investigate its cyclic voltammetry (CV) behavior. The EGaIn capacitor is composed of two EGaIn electrodes and electrolyte. CV curves reveal that the EGaIn capacitor shows the behavior of electric double-layer capacitors (EDLC), where the oxide layers on the EGaIn electrodes serves as the dielectric layer of EDLC. The oxide thicker than the spontaneously-formed native oxide decreases the capacitance of the EGaIn capacitor, due to increased voltage loss across the oxide layer. The EGaIn capacitor without oxide layer exhibits unstable CV curves during the repeated cycles, where self-repair characteristic of the oxide was observed. Finally, the electrolyte concentration is optimized by comparing the CV curves at various electrolyte concentrations.

Analysis of Bulk Concentration on Double-Layer Structure for Electrochemical Capacitors

  • Khaing, Khaing Nee Nee;Hla, Tin Tin
    • 한국재료학회지
    • /
    • 제32권7호
    • /
    • pp.313-319
    • /
    • 2022
  • Double-layer capacitors (DLCs) are developed with high surface electrodes to achieve a high capacitance value. In the present work, the initial bulk concentration of 1 mol/m3 and 3 mol /m3 are selected to show the consequential effects on the performance of a double-layer capacitor. A 1D model of COMSOL Multiphysics has been developed to analyze the electric field and potential in cell voltage, the electric displacement field and polarization induced by the field, and energy density in a double-layer structure. The electrostatics and the electric circuit modes in COMSOL are used to simulate the electrochemical processes in the double-layer structure. The analytical analysis of a double-layer capacitor with different initial bulk concentrations is investigated by using Poisson-Nernst-Plank equations. From the simulation results, the differential capacitance changes as a function of compact layer thickness and initial bulk concentration. The energy density varies with the differential capacitance and voltage window. The values of energy density are dominated by the interaction of ions in the solution and electrode surface.

전기이중층 캐패시터 전극용 meso-pore구조의 미소구형 활성탄소 제조 (Preparation of Micro-spherical Activated Carbon with Meso-porous Structure for the Electrode Materials of Electric Double Layer Capacitor)

  • 엄의흠;이철태
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.396-401
    • /
    • 2009
  • 전기이중층 캐패시터의 성능향상을 위한 전극물질로서 resorcinol-formaldehyde수지를 탄소원으로 사용하여 meso-pore 비율 52~64%의 기공특성을 지니며 직경 $2{\sim}10{\mu}m$의 미세구형 활성탄을 제조하였다. 이 활성탄을 전기이중층에 적용한 결과, meso-pore구조의 미세구형활성탄은 전하전달저항의 저감 및 충방전율 수용능력 향상에 효과적인 영향을 나타내어 전기이중층 캐패시터의 성능향상을 위한 효과적인 전극물질이 될 수 있음을 확인할 수 있었다.

단상 SRM 구동을 위한 새로운 능동 부스트 전력 컨버터 (A Novel Active Boost Power Converter for single phase SRM)

  • 석승훈;;이동희;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.277-279
    • /
    • 2008
  • In this paper, a novel active boost converter for SR drive is proposed. An active capacitor circuit is added in the front-end. Based on this active capacitor network, when boost switch turns off, this network seems as passive capacitor network. And the voltage of boost capacitor can keep balance with dc-link voltage automatically. In the capacitor network, discharging voltage is general dc-link voltage in parallel-connected capacitors; charging voltage is double dc-link voltage in series-connected capacitors. When boost switch turns on, two capacitors are connected in series, and discharging voltage is up to double dc-link voltage. So the fast excitation current can be obtained from this mode. Profit from fast excitation and fast demagnetization mode, the performance and output power can be improved. Some computer simulations are done to verify the performance of proposed converter.

  • PDF

전기이중층 Capacitor의 산업용 controller에 응용 (Application to industrial controller of electric double layer capacitor)

  • 강창섭
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.477-480
    • /
    • 2017
  • 전기이중층 Capacitor는 대전력을 쉽게 충방전할 수 있는 전력저장장치로 순간전압강하 보상장치, 정전대책장치, 회생전력 흡수장치 등 적용하는 범위가 광범위하게 확대되고 있다. 전기이중층 Capacitor의 산업용 응용분야로서 제어회로 전원에 많이 사용되고 있는 ATX 전원의 Backup소자로서 전기이중층 Capacitor를 적용하고 있다. 본고에서는 ATX 전원에 전기이중층 Capacitor M-CAP을 응용한 사례를 소개하고자 한다.

  • PDF

Studies on Electrical Double Layer Capacitor Based on Mesoporous Activated Carbon

  • Meigen, Deng;Yihong, Feng;Bangchao, Yang
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.86-88
    • /
    • 2005
  • Mesoporous activated carbon (AC) was prepared from aged petroleum coke through chemical activation. The AC has a specific surface area of 1733 $m^2/g$ and a mean pore diameter of 2.37 nm. The volume fraction of 2 to 4nm pores is 56.74%. At a current density of 10 mA/$cm^2$, a specific capacitance of 240 F/g is achieved representing the use factor of the surface area of 69.2%. And the electrical double layer capacitor (EDLC) based on the AC shows an excellent power performance. This result suggests that the presence of high fraction of mesopores can effectively increase the adsorption efficiency of the specific surface area of the AC and enhance the power performance of EDLC based on the efficient surface area of the AC.

  • PDF

Optimized Installation and Operations of Battery Energy Storage System and Electric Double Layer Capacitor Modules for Renewable Energy Based Intermittent Generation

  • Min, Sang Won;Kim, Seog Ju;Hur, Don
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.238-243
    • /
    • 2013
  • In this paper, a novel approach for optimized installation and operations of battery energy storage system (BESS) and electric double layer capacitor (EDLC) modules for the renewable energy based intermittent generation is presented for them to be connected with an electric power grid. In order to make use of not merely the high energy density of battery but also the high power density of EDLC modules, it is very useful to devise the hybrid system which combines BESS and EDLC modules. The proposed method adopts the linear programming to calculate the optimized capacity as well as the quadratic programming to transmit the optimal operational signals to BESS and EDLC modules. The efficiency of this methodology will be demonstrated in the experimental study with the real data of wind speed in Texas.