• Title/Summary/Keyword: domain decomposition methods

Search Result 98, Processing Time 0.021 seconds

High Performance Hybrid Direct-Iterative Solution Method for Large Scale Structural Analysis Problems

  • Kim, Min-Ki;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-86
    • /
    • 2008
  • High performance direct-iterative hybrid linear solver for large scale finite element problem is developed. Direct solution method is robust but difficult to parallelize, whereas iterative solution method is opposite for direct method. Therefore, combining two solution methods is desired to get both high performance parallel efficiency and numerical robustness for large scale structural analysis problems. Hybrid method mentioned in this paper is based on FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal method) which has good parallel scalability and efficiency. It is suitable for fourth and second order finite element elliptic problems including structural analysis problems. We are using the hybrid concept of theses two solution method categories, combining the multifrontal solver into FETI-DP based iterative solver. Hybrid solver is implemented for our general structural analysis code, IPSAP.

Multi-resolution hierarchical motion estimation in the wavelet transform domain (웨이브렛 변환된 다해상도 영상을 이용한 계층적 움직임 추정)

  • 김진태;장준필;김동욱;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.50-59
    • /
    • 1996
  • In this paper, a new hierarchical motion estiamtion scheme using the wavelet transformed multi-resolution image layers is proposed. Compared with the full search motion estimation method, the existing hierarchical methods remarkably reduce the amount of the computation but their efficiencies are depreciated by the local minima problem. In order to solve the local minima problem, the multi-resolution image layers are composed using the wavelet transform and the number of layers participated in the motion estimation for a block is determined by considering of its low band energy and higher band energy on the first wavelet transformed layer. The ratio between higher band energy and low band energy of each block is evaluated and in the case of the blocks which include relatively large higher band energy, the motion estimation is carried out in the high resolution layer. Otherwise, all layers are used. The final motion vectors are obtained in the first wavelet transformed layer. So less bits for motion vectors are transmitted, and the decomposition of received image using inverse wavelet transform decreases the blocking effect.

  • PDF

Normalization of Higher Order Spectrum and Analysis of Quadratic Phase Coupling (고차스펙트럼의 정규화 방법과 이차 위상결합 해석)

  • 이준서;김봉각;이원평;차경옥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.235-239
    • /
    • 1999
  • This thesis is concerned with the development of useful engineering techniques to detect and analyze nonlinearities in mechanical systems. The methods developed are based on the concepts of higher order spectra, in particular the bispectrum. The study of higher order statistics has been dominated by work on the bispectrum. The bispectrum can be viewed as a decomposition of the third moment(skewness) of a signal over frequency and as such is blind to symmetric nonlinearities. Initially auto higher order spectra are studied in detail with particular attention being paid to normalization method. Traditional method based on the bicoherence are studied. Under certain conditions, notably narrow band signals, the above normalization method is shown to fail and so a new technique based on prewhitening the signal in the time domain is developed.

  • PDF

A Study on the Sonar Data Processing by Using a Discrete Wavelet Transform (이산 웨이브릿 변환을 이용한 소나 자료처리에 관한 연구)

  • Kim, Jin-Hoo;Kim, Hyun-Do
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.324-329
    • /
    • 2003
  • Spectral analysis is an important signal processing tool for time series data. The transformation of a time series into the frequency domain is the basis for a significant number of processing algorithms and interpretive methods. Recently developed transforms based on the new mathematical field of wavelet analysis bypass the resolution limitation and offer superior spectral decomposition. The discrete wavelet transform of Sonar data provides spectral localization of noises, hence noises can be filtered out successfully.

  • PDF

OMA of model chimney using Bench-Scale earthquake simulator

  • Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • This study investigated the possibility of using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Operational Modal Analysis (OMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model chimney. As known OMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model chimney for dynamic characteristics was performed. 3D Finite element model of the chimney was evaluated based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 1.996% are different.

A FE2 multi-scale implementation for modeling composite materials on distributed architectures

  • Giuntoli, Guido;Aguilar, Jimmy;Vazquez, Mariano;Oller, Sergio;Houzeaux, Guillaume
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.99-109
    • /
    • 2019
  • This work investigates the accuracy and performance of a $FE^2$ multi-scale implementation used to predict the behavior of composite materials. The equations are formulated assuming the small deformations solid mechanics approach in non-linear material models with hardening plasticity. The uniform strain boundary conditions are applied for the macro-to-micro transitions. A parallel algorithm was implemented in order to solve large engineering problems. The scheme proposed takes advantage of the domain decomposition method at the macro-scale and the coupling between each subdomain with a micro-scale model. The precision of the method is validated with a composite material problem and scalability tests are performed for showing the efficiency.

A Systolic Array Structured Decision Feedback Equalizer based on Extended QR-RLS Algorithm (확장 QR-RLS 알고리즘을 이용한 시스토릭 어레이 구조의 결정 궤환 등화기)

  • Lee Won Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1518-1526
    • /
    • 2004
  • In this paper, an algorithm using wavelet transform for detecting a cut that is a radical scene transition point, and fade and dissolve that are gradual scene transition points is proposed. The conventional methods using wavelet transform for this purpose is using features in both spatial and frequency domain. But in the proposed algorithm, the color space of an input image is converted to YUV and then luminance component Y is transformed in frequency domain using 2-level lifting. Then, the histogram of only low frequency subband that may contain some spatial domain features is compared with the previous one. Edges obtained from other higher bands can be divided into global, semi-global and local regions and the histogram of each edge region is compared. The experimental results show the performance improvement of about 17% in recall and 18% in precision and also show a good performance in fade and dissolve detection.

Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model

  • Fan, Xingyu;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.501-523
    • /
    • 2016
  • Electromechanical impedance (EMI) based structural health monitoring is performed by measuring the variation in the impedance due to the structural local damage. The impedance signals are acquired from the piezoelectric patches that are bonded on the structural surface. The impedance variation, which is directly related to the mechanical properties of the structure, indicates the presence of local structural damage. Two traditional EMI-based damage detection methods are based on calculating the difference between the measured impedance signals in the frequency domain from the baseline and the current structures. In this paper, a new structural damage detection approach by analyzing the time domain impedance responses is proposed. The measured time domain responses from the piezoelectric transducers will be used for analysis. With the use of the Time Frequency Autoregressive Moving Average (TFARMA) model, a damage index based on Singular Value Decomposition (SVD) is defined to identify the existence of the structural local damage. Experimental studies on a space steel truss bridge model in the laboratory are conducted to verify the proposed approach. Four piezoelectric transducers are attached at different locations and excited by a sweep-frequency signal. The impedance responses at different locations are analyzed with TFARMA model to investigate the effectiveness and performance of the proposed approach. The results demonstrate that the proposed approach is very sensitive and robust in detecting the bolt damage in the gusset plates of steel truss bridges.

Research for Efficient Massive File I/O on Parallel Programs (병렬 프로그램에서의 효율적인 대용량 파일 입출력 방식의 비교 연구)

  • Hwang, Gyuhyeon;Kim, Youngtae
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • Since processors are handling inputs and outputs independently on distributed memory computers, different file input/output methods are used. In this paper, we implemented and compared various file I/O methods to show their efficiency on distributed memory parallel computers. The implemented I/O systems are as following: (i) parallel I/O using NFS, (ii) sequential I/O on the host processor and domain decomposition, (iii) MPI-IO. For performance analysis, we used a separated file server and multiple processors on one or two computational servers. The results show the file I/O with NFS for inputs and sequential output with domain composition for outputs are best efficient respectively. The MPI-IO result shows unexpectedly the lowest performance.

Evaluation of Short and Long-Term Modal Parameters of a Cable-Stayed Bridge Based on Operational Modal Analysis (운용모드해석에 기반한 사장교의 장단기 동특성 평가)

  • Park, Jong-Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.20-29
    • /
    • 2022
  • The operational modal analysis (OMA) technique, which extracts the modal parameters of a structural system using ambient vibrations, has been actively developed as a field of structural health monitoring of cable-supported bridges. In this paper, the short and long-term modal parameters of a cable-stayed bridge were evaluated using the acceleration data obtained from the two ambient vibration tests (AVTs) and three years of continuous measurements. A total of 27 vertical modes and 1 lateral mode in the range 0.1 ~ 2.5 Hz were extracted from the high-resolution AVTs which were conducted in the 6th and 19th years after its completion. Existing OMA methods such as Peak-Picking (PP), Eigensystem Realization Algorithm with Data Correlation (ERADC), Frequency Domain Decomposition (FDD) and Time Domain Decomposition (TDD) were applied for modal parameters extraction, and it was confirmed that there was no significant difference between the applied methods. From the correlation analysis between long-term natural frequencies and environmental factors, it was confirmed that temperature change is the dominant factor influencing natural frequency fluctuations. It was revealed that the decreased natural frequencies of the bridge were not due to changes in structural performance and integrity, but to the environmental effects caused by the temperature difference between the two AVTs. In addition, when the TDD technique is applied, the accuracy of extracted mode shapes is improved by adding a proposed algorithm that normalizes the sequence so that the autocorrelations at zero lag equal 1.