• Title/Summary/Keyword: diversity gains

Search Result 73, Processing Time 0.02 seconds

STBC SC-FDE based on LS-Algorithm for Fixed Broadband Wireless Access System

  • Kim Han Kyong;Hwang Ho Seon;Baik Heung Ki
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.596-599
    • /
    • 2004
  • We propose an Alamouti-like scheme for combining space-time block coding with single-carrier frequency-domain equalization(SC-FDE) in fixed broadband wireless access environment. With two transmit antennas, the scheme is shown to achieve significant diversity gains at low complexity over frequency-selective fading channels

  • PDF

Serially Concatenated Space-Time LDPC Codes for High Data Rate Wireless Communication (고속 무선 통신을 위한 직렬 연접 시공간 LDPC 부호에 관한 연구)

  • 장혜경;이문호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.335-338
    • /
    • 2002
  • For high data rate transmission over wireless fading channels, space-time trellis ceding techniques can be employed to increase the Information capacity of the communication system dramatically. In this paper, we consider the concatenated space time LDPC (Low Density Parity Check) codes. Extra ceding gains In addition to the diversity advantage is shown to be achieved for certain space-time trellis codes transmitted over quasi-static lading channels.

  • PDF

Performance Analysis of Multi-hop Wireless Networks under Different Hopping Strategies with Spatial Diversity

  • Han, Hu;Zhu, Hongbo;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2548-2566
    • /
    • 2012
  • This paper derives two main end-to-end performance metrics, namely the spatial capacity density and the average end-to-end delay of the multi-hop wireless ad hoc networks with multi-antenna communications. Based on the closed-form expressions of these performance metrics, three hopping strategies, i.e., the closest neighbor, the furthest neighbor and the randomly selected neighbor hopping strategies have been investigated. This formulation provides insights into the relations among node density, diversity gains, number of hops and some other network design parameters which jointly determine network performances, and a method of choosing the best hopping strategy which can be formulated from a network design perspective.

Design and Performance of Space-Time Trellis Codes for Rapid Rayleigh Fading Channels

  • Zummo, Salam A.;Al-Semari, Saud A.
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.174-183
    • /
    • 2003
  • Space-Time (ST) codes are known to provide high transmission rates, diversity and coding gains. In this paper, a tight upper bound on the error probability of ST codes over rapid fading channels is presented. Moreover, ST codes suitable for rapid fading channels are presented. These codes are designed using the QPSK and 16-QAM signal constellations. The proposed codes are based on two different encoding schemes. The first scheme uses a single trellis encoder, whereas the second scheme uses the I-Q encoding technique. Code design is achieved via partitioning the signal space such that the design criteria are maximized. As a solution for the decoding problem of I-Q ST codes, the paper introduces a low-complexity decoding algorithm. Results show that the I-Q ST codes using the proposed decoding algorithm outperform singleencoder ST codes with equal complexity. The proposed codes are tested over fading channels with different interleaving conditions, where it is shown that the new codes are robust under such imperfect interleaving conditions.

Space-Time Carrier Interferometry Techniques with Low-density Parity Check Code for High-speed Multimedia Communications

  • Chung Yeon-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.6
    • /
    • pp.728-734
    • /
    • 2006
  • Carrier interferometry code is considered as a promising scheme that provides significant performance improvement via frequency diversity effect. Space-time coding is commonly employed to achieve a performance gain through space diversity. The combination of these techniques and forward error correction coding will lead to enhanced system capacity and performance. This paper presents a low-density parity check (LDPC) coded space-time orthogonal frequency division multiplexing (OFDM) transmission scheme with carrier interferometry code for high-capacity and high-performance mobile multimedia communications. Computer simulations demonstrate that the proposed mobile multimedia transmission system offers a considerable performance improvement of approximately 9dB in terms of Eb/No in the Rayleigh fading channel with relatively low delay spread, in comparison with space-time OFDM. Performance gains are further increased, comparing with traditional OFDM systems.

  • PDF

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.

Performance Improvement of OFDM System Using Transmit Diversity with Space-Time Block Coding

  • Yorwittaya, N.;Chamchoy, M.;Supanakoon, P.;Tangtisanon, P.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1066-1069
    • /
    • 2002
  • Orthogonal frequency division multiplexing (OFDM) is a special technique for communication systems which can support the high data rate transmission with sufficient robustness to fading channels. Tansmitter diversity with space-time block coding (STBC) is an attractive transmission scheme to improve the performance of systems. In this paper, we compare the performance of space-time block coded OFDM systems with that of conventional OFDM systems over fast fading channels. The block-interleaved (BI) STBC and frequency hopping (FH) OFDM are proposed in the study to provide the maximum achievable diversity gains. As the simulation results, the STBC OFDM, Bl-STBC OFDM and Bl-STBC FH-OFDM provide the much improved performance over the conventional OFDM. And the Bl-STBC FH-OFDM also provide the better performance than the STBC OFDM and Bl-STBC OFDM, especially, in the case of the two transmit antennas are employed while BI-STBC FH-OFDM can maintain the same data rate of 12 Mbps.

  • PDF

Performance Evaluation of High-performance MIMO-OFDM System using Carrier Interferometry Codes in Frequency Selective Fading Channels (주파수 선택적 페이딩 채널에서 반송파 간섭 부호를 이용한 고성능 MIMO-OFDM 시스템의 성능분석)

  • Seo Wan-woo;Chung Yeon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1643-1648
    • /
    • 2005
  • MIMO system takes advantage of the spatial diversity obtained by spatially separated antennas for high- performance and high-capacity broadband wireless access. In this paper, we propose Carrier Interferometry coded MIMO-OFDM system (MIMO-CI/OFDM) which provides frequency and spatial diversity. One combined diversity gains featly improve the performance of OFDM systems. To perform a performance analysis, we have used SPW platform that provides an easy tool to analyze the performance. The results show that the performance of MIMO-CI/OFDM shows an approximately 4dB gain over the MIMO-OFDM even in highly frequency selective fading channels.

Cooperative Communication Scheme Based on channel Characteristic for Underwater Sensor Networks (수중 센서 네트워크를 위한 채널 특성기반의 협력 통신 기법)

  • Ji, Yong-Joo;Choi, Hak-Hui;Lee, Hye-Min;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.21-28
    • /
    • 2016
  • This paper presents a cooperative transmission scheme for underwater acoustic sensor networks to improve packet transmission rate and reduce energy consumption. Source node transmits duplicated information relayed by distributed antennas called a virtual antenna array. Destination node combines that information to reduce packet error rate. The suggested cooperative scheme enhances the reliability by providing high diversity gains through intermediate relay nodes to overcome the distinct characteristics of the underwater channel, such as high transmission loss, propagation delay, and ambient noises. It is suggested that the algorithm select destinations and potential relays from a set of neighboring nodes that utilize distance cost, the residual energy of each node and local measurement of the channel conditions into calculation. Simulation results show that the proposed scheme reduces average energy consumption, response time, and increases packet delivery ratio compared with the SPF(Shortest Path First) and non-cooperative scheme using OPNET Moduler.

Energy-efficient Routing in MIMO-based Mobile Ad hoc Networks with Multiplexing and Diversity Gains

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.700-713
    • /
    • 2015
  • It is critical to design energy-efficient routing protocols for battery-limited mobile ad hoc networks, especially in which the energy-consuming MIMO techniques are employed. However, there are several challenges in such a design: first, it is difficult to characterize the energy consumption of a MIMO-based link; second, without a careful design, the broadcasted RREP packets, which are used in most energy-efficient routing protocols, could flood over the networks, and the destination node cannot decide when to reply the communication request; third, due to node mobility and persistent channel degradation, the selected route paths would break down frequently and hence the protocol overhead is increased further. To address these issues, in this paper, a novel Greedy Energy-Efficient Routing (GEER) protocol is proposed: (a) a generalized energy consumption model for the MIMO-based link, considering the trade-off between multiplexing and diversity gains, is derived to minimize link energy consumption and obtain the optimal transmit model; (b) a simple greedy route discovery algorithm and a novel adaptive reply strategy are adopted to speed up path setup with a reduced establishment overhead; (c) a lightweight route maintenance mechanism is introduced to adaptively rebuild the broken links. Extensive simulation results show that, in comparison with the conventional solutions, the proposed GEER protocol can significantly reduce the energy consumption by up to 68.74%.