• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.028 seconds

Adaptive Controllers with Integral Action (적분 동작이 포함된 적응제어기)

  • 한홍석;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.220-225
    • /
    • 1988
  • A class of adaptive controllers with integral action is proposed, which may riject the offset due to any load disturbance on the plant. Effective integral action and robust identification against the offset can be achieved via the zero-gain predictor. The system is improved, in this paper, to be of more generalized structure, and the detuning control weight which can cope with nonminimum-phase systems is tuned on-line. Discrete-time versions of the improved system are developed, which may be more flexible for the choice of the design parameters. The resulting control systems may also be shown to be robust to the unmodelled dynamics.

  • PDF

Robust H\ulcorner Control for Delayed System with Time-Varying Norm-Bounded Parameter Uncertainty

  • Kim, Jong-Hae;Jeung, Eun-Tae;Park, Hong-Bea
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.33-38
    • /
    • 1996
  • In this paper, we present a robust H\ulcorner control design method for parameter uncertain systems that have delay in both state and control input. Through a certain algebraic Riccati inequality approach, a state feedback controller is obtained. The proposed state feedback controller stabilizes parameter uncertain delay systems and guarantees disturbance attenuation within a prescribed level. An illustrative example is given to demonstrate the results of the proposed method.

  • PDF

Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying (확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정)

  • Lee, Young-Gu;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

Design of LTBC Controller for Tension Control in Down Coiler Process of Hot Strip Mills (열간압연 권취공정의 장력제어를 위한 LTBC 제어기 설계)

  • Lee, Sang Ho;Park, Hong Bae;Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.301-308
    • /
    • 2015
  • In this paper, we propose an LTBC (Low Tension and Load Balance Control) scheme to improve a coiling shape control by reduction the tension fluctuation by the torque disturbance in the down coiler process of hot strip mills. The proposed controller is a combination of an LTC to control the overload at load-on in the mandrel and an LBC to regulate the load balance of the upper and bottom pinch roll. A tension calculation model is suggested with the concept of the tension deviation. The effectiveness of the proposed control scheme is verified from simulation under a disturbance of the pinch roll torque. Using a field test, we show that the performance of the shape and tension control is improved by the LTBC control.

The Design of Sliding Mode Controller with Nonlinear Sliding Surfaces (비선형 스위칭 평면을 이용한 슬라이딩모드 제어기 설계)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3622-3625
    • /
    • 2009
  • This study develops a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. By appling TS algorithm to the regulation of the rionlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method. This proposed scheme has better performance than the conventional method in reaching time, parameter variation and extraneous disturbance. The effectiveness of the proposed control scheme is verified by simulation results.

Implementation of Robust Direct Seek Control System for High-Speed Rotational Optical Disk Drives (고배속 광 디스크 드라이브를 위한 강인 직접 검색 제어 시스템의 구현)

  • Jin, Gyeong-Bok;Lee, Mun-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.539-546
    • /
    • 2002
  • This paper presents a new direct seek control scheme that provides fast data access capability and robust performance for high-speed rotational optical disk drives (ODD). When a disk is rotating at a high speed to obtain fast data transfer in ODD, the magnitude and frequency of velocity disturbance caused by eccentric rotation of the disk increase in proportion to the rotational speed of the disk. Such disturbances make it almost impossible for the conventional seek control scheme to achieve stable and satisfactory seek performance. We analyze the problems that may arise when the conventional seek control scheme is applied to the high-speed rotational ODD and propose a new direct seek control scheme that will solve such problems. In the proposed scheme, a seek control system is designed such that its performance is guaranteed for a set of plants with parameter perturbations. The performance of the proposed seek control scheme is shown by experiments using a high-speed rotational ODD.

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

RCGA-Based State Feedback Control for Seesaw Systems (시소 시스템을 위한 RCGA 기반의 상태피드백 제어)

  • Oh, Sea-June;So, Myung-Ok;Jung, Byung-Gun;Ryu, Ki-Tak;Lee, Yun-Hyung;Lee, Sang-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.974-980
    • /
    • 2008
  • Generally. most of the physical systems affected by disturbance or incomplete knowledge are complex and highly nonlinear. To control under these circumstances. many researches are ongoing in modern control theory recently. But the researches need apparatuses. which can verify the controller for being not damaged the real plant. In this paper. therefore. a seesaw system is considered control system to analyze and apply the control theory. A seesaw system consists of a moving cart on the rail and seesaw frame made to demonstrate the effectiveness of the control theory. The system has balancing and positioning problems. and the driving force is applied on the DC motor of cart. but not on the pivot. The purpose of control is to maintain an equilibrium of seesaw frame in spite of an allowable disturbance. Computer simulations are given to illustrate the control performance of the proposed scheme.

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.