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Adaptive Controllers with Integral Action
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Abstract — A class of adaptive controllers with integral action is proposed, which may reject the offset
due to any load disturbance on the plant. Effective integral action and robust identification against
the offset can be achieved via the zero-gain predictor”. The system is improved, in this paper, to be
of more generalized structure, and the detuning control weight which can cope with nonminimum-phase
systems is tuned on-line, Discrete-time versions of the improved system are developed, which may be
more flexible for the choice of the design parameters. The resulting control systems may also be shown

to be robust to the unmodelled dynamics.

n, 4, 5

loop , or modelling the system to include an offset

1. Introduction term®, These system can be derived by resorting to

CARIMA (Controlled Auto-Regressive and Inte-

In this paper, adaptive control systems with inte-
gral action are developed based on the GMV (Gen-
eralized Minimum Variance) technique. The steady-
state error or the offset caused by any load disturb-
ance or nonzero mean setpoint can be eliminated
via a variety of approaches, including adaptive param-
eter adjustment, but the usual method is to in-
corporate integral action, This can be achieved by

physically cascading an integrator into the control
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grated Moving Average) model of the plant®, waich
appears to be the most appropriate representation
of disturbed real process,

This paper improves the continuous-time control
systems proposed by Gawthrop® to be of more gener-
alized structure as follows:;

1) The system is described as a CARIMA model,
which may be more natural. For example, polynomi-
als A(s) and B(s) which define the system dynamics
are assumed such that A(0)=*0 and B(0)=0 instead
of A(0)=B(0)=0 in the system® but the resulting
controllers are similar.

2) The control system may be of more generalized
structure, which results in that choice of the polyno-
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mial C(s) determining the disturbance dynamics is
flexible, i.e., C{s) is chosen such that C(0)=0 instead
of C(0)=L1.

3) The detuning term is tuned on-line: A detuned
version of the control systems can cope with non-
minimum- phase systems. But how to choose the
detuning weight is still not clear. A method is propos-
ed here, by which the weight could be tuned on-line,
This controller may also be shown to be robust
against the unmodelled dynamics,

In addition to the improvements, discrete-time
versions of the systems are developed as follows:

1) Discretized or digitalized control systems may be
required with developements of microprocessors or
digital computers,

2) The choice of the order of the polynomial C(s)
may be not restricted, since the “proper” condition
for obtaining finite gain at infinite frequency in the
continuous-time approach is not required. This fact
contributes to establishment of more generalized
structure,

The control systems are described as discrete-time
systems. The paper is organized as follows. The system
is modelled and the control objective is discussed in
section 2. In section 3, the controller is derived, A
detuned version of the controller is presented in sec-
tion 4, Simulation results and conclusion are given

in section 5 and 6 respectively.

2. Problem statements

In the continuous-time approach, the system has
been modelled to include an offset term for obtaining
a zero-gain predictor, This leads to that the polyno-
mials A(s)and B(s) which define the system dynam-
ics are such that A(()=B(())=0. In this paper,
the system is described as a CARIMA model, and
the polynomials A((})=() and B((0)=(, which may
be shown to be more natural than the former.

Let the system be modelled as a CARIMA model

Alqg DY (t)=B(g ") U(t-k)+Z(t) (2.1)

where Y(t), U(t), Z(t) are the output, control, and
disturbance respectively. A(q"') and B(q ') are poly-

nomials in the unit backward-shift operator q .
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Assumptions are made that the system time delay
k is to be known, A((})=1 and B((Q)#*0, and the
disturbance has stationary increments, ie. it is

modelled as

D(g)Z(t)=C(q Hé(t) (2.2)

where £(t) is a random process with zero-mean,
C(q") and D(q ') are polynomials such that
C(0)=( and

D(q )=1-q' (2.3)
The system (2.1) can be expressed as
AlgHY(t)=B(g)U(t-k)+C(qg ")&(t) (2.4)

where A (q™!) denotes D (q ')A(q "), and this no-
tation is used throughout.
Let the reference model be given by

P{g )¥Ym(t)=R(q HYW(t-k) (2.

S}
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where Ym(t) is the output, W(t) the setpoint, and
P(q ') and R(q ") are polynomials such that
P(0)#0 and R(0)#*0. In the sequel, it is assumed
R(q')=1 for convenience,

The controller is to be chosen to minimize the

performance index
J=E[V(t)*|t] (2.6)

where the expectation is conditional on data acquired

up to time t, and the signal V(t) is given by

V(t)=P(q)[Y(t+k)-Ym(t+k)]
=P(q ") Y{t+k)-W(t)
= ¢ (t+k)-W(t) (2.7)

The control law minimizing the performance index
(2.6) 1s, under the assumption that £(t) and W(t)
are independent with each other, given by

¢ (t+k)=W(1) (28)

where ¢ "(t+k) is an optimal prediction of ¢ (t+k)
=P(q )Y (t+k).
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3. A controller with integral action
3.1. A zero-gain predictor

It is a well-known fact that satisfactory estimation
in the adaptive framework requires that the predic-
tion error and data are uncorrelated. Without im-
posing a stochastic framework, it is not possible to
use this fact directly. Therefore, the requirement is
that the predictor structure should be such that both
the prediction error and data have small average
values,

Zero-mean data could be obtained by incorporating
a (1-g') term into a predictor. The predictor with
such a property is called a zero-gain predictor, which
blocks any constant component in the signals and
the average values are removed. The prediction error

7(t)= ¢ (1)-¢"(t)
also has a zero-average value, according to zero-mean
§(t). The predictor may be obtained by restricting
the polynomials to be of a certain form as follows:

yo=1 (3.1)

where ¥ and ¢ are definded by

Clg)=y+Co(q™), y=C(1) (3.2)
and
P(q")=¢+Pol(q"), ¢=p(1) (3.3)

respectively, and
Colq™)=Yo+r.q™ -, Po(q™) =p,t+@q '+

It seems to be flexible for the choice of the polyno-
mials C(q™") and P(q™) compared with the case of
fixing C(s)=P(s)=1 at s=0 in Gawthrop?. Thus,
this leads to a control system of more generalized
structure, Moreover, because the “proper” condition
is not required in the discrete-time system, the order
of the polynomial C{q™) can be chosen to be of ar-
bitrary one and this also contributes to establishment
of more generalized structure,

Under the assumption, the auxiliary signal ¢ (t+k)
in the signal(2.7) can be expressed as

¢ (t+k)=Y(t) / C(qg")+p(t+k) (3.4)
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where the predictive form of (t+k) can be given
by

P4k =[Go(aHU(t)+Fo(q™) Y(t) ]/ Cla ™)+
Eo(aM)é(t+k) (3.5)

from the polynomial identity

P(g)C(g")=A(q)Eo(q?)+q*F(g?) (3.6)

and Go(q™)=Eo(q?*)B(q™). Due to the observation
of (3.6) at the steady-state, the polynomial F(gq™
can be decomposed as

F(g")=14Fo(q™) (3.7)

With this relation, the identity (3.6) can be rewritten
as

P(q")C{a ) =qa*+A(q")Eo(g")+q*Fo(q™)
(3.8)

The predictor is now given by

#"(t+k)=[Go(qHU(t)+Fo(q™)Y(t) ]/ C(q™)
(39)

and thus becomes a zero-gain predictor. The order
of the polynomials Go(q™) and Fo(q™) are

PGo(q")=pB(q")+k-1
PFo(q")=max {[rA(q™)-1], [PP(q)4-p,C(q™)-
k-11}

respectively, where 2(-) denotes the order of the
polynomial (-).

3.2 A Controller with Integral action

The resulting control law from the predictor(3.9) can
be given by

$ (t+k)=Y(t) / C(q)+g*(t+k)=W(t)
(3.10)
or
U)={[C@W(t)-Y(t)] -Fo(q) Y (1)} / Golg™)
(3.11)

This control law can be rewritten as

1 [ YW(t)-Y(t)
Go(q™) D(q™)
Fo(q™)Y(t)]

U(t)=

+Co(q " YW(t) -
(3.12)
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where the polynomial D{q™*)=(1-q") as in (2.3).
Since the choice of C(q™) is arbitrary, i.e., C(0)*0
and its order not restricted, all the gain factors v and
7, 1==(),---, representing the setpoint integral, propor-
tional, and derivative terms can be set to any values,
This fact leads to the system of generalized structure,
which may be important in typical industrial appli-
cations.

The closed-loop response to the setpoint with the
control is described by

Y(t):?(é—l) W(t-k)+%)— gy 313
and the model following property might be achieved.
For the response to track the setpoint, instead of the
reference output, the polynomial R{(q™) in (2.5)
should be specified by R(1)=¢. Due to direct pole-zero
cancellation the control law can not deal with non-
minimum- phase systems. This difficulty could be
overcome by detuning the control law,

The controller discussed above is to be optimal,

In an adaptive framework, the standard RLS algo-

rithm® may be used to estimate the control parameters,

4. A detuned control law

As mentioned in the previous section,a model-ref-
erence method with the control(3.2) is not applicable
to nonminimum-phase systems due to direct pole-
zero cancellation. Furthermore, the method is sensi-
tive to unmodelled dynamics or model order-mis-
match. These problems could be alleviated by using
a detuned version of the control law, Here, the detun-
ed controller is introduced and a method of choosing
the weights of the detuned term is also developed,

The cost function (2.6) is now given in terms of

the auxiliary signal
VIO=P(q )Y (t+k)+Q(aMHU(L)-W(t)  (4.1)
where Q(q ') is given by

Q(gM)=M(q") /C(g") (4.2)

and

M(q™)=my+m, q'
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The polynomial M(q™') may be specified as inverse
form of PI (Proportional+Integral) controller for
smoothing the excessive control action. In the sequel,
the polynomial is assumed to be constant m for con-
venience,

The cost function could be minimized by the con-

trol law,
O (t+k)= ¢ (t+k)+Q(q "HYU(t)=W(t) (4.3)

A detuned version of the controller (3.12) is now

expressed as

1
(Go(g™")+m)

YW()-Y(t)
D(q™)

Co(q ') W(t) ~Folqg )Y (t)] (4.4)

U(t)=

[ +

The closed-loop response to the setpoints with this

control law may be written by

B(g")C(q ") W(t-k) N
P(q™")B(q)C(qa™)-+M(g™")A(q™)
C{q™) [B(q }Eo(q')+m] é(t) (4.5)
P(q")B(q )C(g)+M(gHA(q")

Y(t)=

As expected, direct pole-zero cancellation might not
arise here, And the clossed-loop characteristics of the
system could be described by

P(q HB(q")C(q ") +M(q HA(q )=0

which is then shown to improve the stability of the
closed-loop system, Therefore, a model-reference fol-
lowing property might be achieved.

It is still not clear how to choose the detuning
weight, although the detuned control system has such
advantages, A method which is capable of tuning the
weight on-line is to be discussed in the sequel,

Now consider a transfer funtion
Tla)=[1/Qa D] [qa*B(qa") /Alg )]  (4.6)

which is the open-loop transfer function from W(t)
to Y (). Define

Tq ")=C(q ")B(q") /mA(q ") (4.7)
then it has a scaler gain, at the steady-state,

T(1)=1/h (4.8)

Thus it can also be written as



m=h C(1)B(1) / A(1) (4.9)

Remark 1 : It is proposed that, in the sence of adap-

tation of m,

m(t)=a(t)h [C(1)B(1) /A1) | (4.10)

where A(q™) denotes the estimate of A(q™), and this
notation is used throughout,

Remark 2 : In direct adaptive schemes, m(t) is chos-
en such that

m(t)=a(t)h |G(1) / F(1)| (4.11)

which is obtained from the relationship of the poly-
nomial identities and the equation (4.10).

Remark 3 : The open-loop gain h is usually specified
as unity and

a(t)=|Uo(t)-U(t-1)| / {1+]|Uo(t)-U(t-1)]}
(4.12)
where Uo(t) is an exact model-following control.

a(t)
the large one leads to the small control, and vice-

and h determine the control activities, i. e,
versa,
5. Simulation results

To verify the performance of this control system,
a system was simulated and compared with a GMV
controller” under the same conditions,

The simulation scheme was given as follows:
A series of runs of 550 samples was executed. The
noise £(t) is assumed to be Gaussian, Step-wise set -
points W(t) with nonzero-mean were chosen to il-
lustrate any possible offsets, The simulated system

was chosen as

(1.0-q™MZ(t)=&(t)

(1.0-1.297*-0.11gH) Y (t)=(0.5+1.0q"YU(t-1)+Z(t),
and

(1.6-0.6 g Ym(t)=W(t-1).

Where the disturbances Z(t) acting on the plant were
assumed to be zero at the first 250 samples. The plant
was modelled as

(L0+a, g Y (t)=(bo+b, g)U(t-1)+Z(t)

to examine the robustness of the control system a-
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gainst the unmodelled dynamics, Estimation of the
control parameters was performed by the standard
RLS estimator with an asymptotic sample length
of 100 samples and zero-initial estimates except
go=f,=1 for the numerical stability. Where the num-
ber of the control parameters to be estimated is three
for the system in this peper and four for the GMV
system, The detuning term with open-loop gain h=1
was included into the control law. In the GMV con-
trol law, the detuning term was specified to be of
the form D(q™) m(t), where

m(t)=m§:gt
where ng is the order of the polynomial G(q'), and
g: coefficients. Since the best choice of m might be
dependent on the system to be examined, a trial and
error approach should be required for obtaining satis-
factory results of the given system. In this simulation
study, m was chosen to be 0.5

Fig.l is the simulation results of the GMYV control
method and Fig.2 is those of the control method in
this paper. As shown in the figures, the GMV control
algorithm, in the presence of nonzero-mean disturb-
ances, leads to offsets or overshoots at the output
of the system, Estimates of these control parameters
may be unsettled when the disturance levels are
changed significantly, In this case, the control system
does not have effective intergral action tin the control
loop and, thus, offsets may occur, Moreover, a small
value of the detuning weight m(t) leads to overshoots
at both the output and the input. On the other hand,
the output of the control system in this paper is shown
to trace well. This seems to be a result of satisfactory
estimation of the control parameters nased on the
zero-gain prediction approach and suitable choice
of the detuning weight

6. Conclusion

To manipulate the unstable and inverse unstable
systems with unmodelled dynamics in the presence
of nonzero-mean load disturbances and setpoints,
a class of adaptive control systems with integral ac-
tion are proposed in this paper. In particular, con-
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centrations are placed on the improvement of the
control system proposed by Gawthrop® in continuous-
time case to more general system. And the detuning
weight is tuned recursively. Then the resulting systems
are developed to be discrete-time versions, where
specifications of the design parameters may be more
flexible and, thus, the systems have generalized
structure, Its performances have been verified on the
simulation studies. A number of simulations, however,
have shown that the method may fail for a certain

system.
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Fig. 1 Simulation results of the GMV control system
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Fig. 2 Simulation results of the system in this paper
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