• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.025 seconds

Improvement of Control Performance by Data Fusion of Sensors

  • Na, Seung-You;Shin, Dae-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • In this paper, we propose a general framework for sensor data fusion applied to control systems. Since many kinds of disturbances are introduced to a control system, it is necessary to rely on multisensor data fusion to improve control performance in spite of the disturbances. Multisensor data fusion for a control system is considered a sequence of making decisions for a combination of sensor data to make a proper control input in uncertain conditions of disturbance effects on sensors. The proposed method is applied to a typical control system of a flexible link system in which reduction of oscillation is obtained using a photo sensor at the tip of the link. But the control performance depends heavily on the environmental light conditions. To overcome the light disturbance difficulties, an accelerometer is used in addition to the existing photo sensor. Improvement of control performance is possible by utilizing multisensor data fusion for various output responses to show the feasibility of the proposed method in this paper.

Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control (강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어)

  • Park, Chintac;Kim, In-Soo;Lee, Young-Jin;Kim, Jong-Shik;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

Structural Analysis and Design of Robust Motion Controllers for High-Accuracy Positioning Systems

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.467-467
    • /
    • 2000
  • In this paper, a structural design method of robust motion controllers for high-accuracy positioning systems, which makes it possible to predict the performance of the whole closed-loop system, is proposed. First, a stabilizing control input is designed based on robust internal-loop compensate.(RTC) for the system in the presence of uncertainty and disturbance. Next, using the structural characteristics of the RIC, disturbance attenuation properties and the performance of the closed-loop system determined by the variation of controller gains are analyzed. Through this analysis, in some specific applications, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. Finally, the proposed method is verified through experiments using a high-accuracy positioning system used in the semiconductor chip mounting devices.

  • PDF

Design of Self Tuning Type Servo Controller for Systems with Known Dusturbance (기지 외란을 가진 시스템의 자기동조형 서보 제어기 설계)

  • Kim, Sang-Bong;Ahn, Hwi-Ung;Yeu, Tae-Kyoung;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.739-744
    • /
    • 2000
  • A robust control algorithm under disturbance and reference change is developed using a self tuning control method incorporting of the well known internal model principle and the annihilator polynomical. The types of disturbance and reference signal are assumed to be given as known difference polynomials. The algorithm is shown for a minimum phase system with parameters of unknown parameters.

  • PDF

Robust H Disturbance Attenuation Control of Continuous-time Polynomial Fuzzy Systems (연속시간 다항식 퍼지 시스템을 위한 강인한 H 외란 감쇠 제어)

  • Jang, Yong Hoon;Kim, Han Sol;Joo, Young Hoon;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.429-434
    • /
    • 2016
  • This paper introduces a stabilization condition for polynomial fuzzy systems that guarantees $H_{\infty}$ performance under the imperfect premise matching. An $H_{\infty}$ control of polynomial fuzzy systems attenuates the effect of external disturbance. Under the imperfect premise matching, a polynomial fuzzy model and controller do not share the same membership functions. Therefore, a polynomial fuzzy controller has an enhanced design flexibility and inherent robustness to handle parameter uncertainties. In this paper, the stabilization conditions are derived from the polynomial Lyapunov function and numerically solved by the sum-of-squares (SOS) method. A simulation example and comparison of the performance are provided to verify the stability analysis results and demonstrate the effectiveness of the proposed stabilization conditions.

Robust Autopilot Design for Nonsquare Flight Systems (비정방 비행 시스템에 대한 강인한 자동조종장치 설계)

  • 김종식;정성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1123-1131
    • /
    • 1993
  • A robust controller is proposed to design a flight autopilot for lateral motion control. The control system has two control loops in order to meet the performance and to maintain the stability-robustness for a nonsquare flight system with uncertain aerodynamic variations and disturbance. One is designed via linear quadratic Gaussian with loop transfer recovery(LQG/LTR) design methodology for the inner loop. The other is designed via proportional controller design method for the outer loop. To show the effectiveness of this control system, it is compared with the LQG/LTR control system for a square flight system and is analyzed for the performance/stability-robustness to model uncertainties and disturbance via wind gusts. It is found that the proposed control system has good heading command-following performance under allowable sideslip angle in spite of model uncertainties and disturbance.

Characteristics Comparison of Motion Controllers through Experiments (실험을 통한 모션제어기의 특성비교)

  • Jung, Seung-Hyun;Wang, Jun;Han, Chang-Wook;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1094-1102
    • /
    • 2008
  • Through the motion control experiment using Industrial Emulator(Model 220 by ECP), the performance comparison of three kinds of controllers such as PID, RIC and LQR was carried out. It was shown that RIC has the best performance in the presence of disturbances such as step one, sinusoidal one and Coulomb friction for the rigid body. LQR using feedback state variables has the best tracking performance far the flexible body. The performance of PID controller is low compared to other controllers, but the design process is simple. The most advanced controller is LQR. In order to attenuate disturbance, an additional state observer should be used to estimate it, making more complex control system. RIC lies between PID and LQR in view of complexity of design. Even though RIC is not complicated, it has good disturbance rejection ability and less tracking error. By considering these aspects, the RIC is suggested as high precision controller to be used in motion control system.

A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation (전향보상을 이용한 BLDC 모터의 속도제어에 관한 연구)

  • Park K.H.;Kim T.S.;Kim K.H.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.663-666
    • /
    • 2003
  • This paper presents a speed controller method based on the disturbance torque observer of high performance brushless DC (BLDC) motor drives. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from tile viewpoint of the system stability. Thus, the feedforward compensator using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The enhanced speed control performance can be achieved and the speed response against the disturbance torque can be Improved for high-performance BLDC motor drive systems in which the bandwidth of tile speed controller cannot be made large enough. Consequently, speed control for high-performance BLDC motor drives become improved. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

  • PDF

Improving nano gap control using frequency adaptive peak filter in Solid Immersion Lens-based plasmonic lithography (SIL 기반 플라즈모닉 리소그래피에서 주파수 적응형 필터를 이용한 나노간극 제어의 성능향상)

  • Choi, Guk-Jong;Lim, Geon;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Plasmonic lithography is the latest technique to overcome diffraction limit of previous optical lithography. In the plasmonic lithography, the nano gap between nano metal wave guide and photoresist should be in sub-wavelength region. SIL-based plasmonic lithography is the one of the solutions to maintain small air gap. However, the nano gap control is so sensitive that a little disturbance is able to have a large effect on the nano gap control. So, we analyzed the characteristics of disturbance, and then modified the previous controller to suppress the disturbance. We applied two peak filters which were fixed one and adaptively changeable one. We experimentally confirmed the improvement of the nano gap control, which reduced nano gap error by 30 %. The proposed control will improve the quality of lithography pattern.

Disturbance Observer-Based Hybrid Control of Displacement and Force in a Medical Tele-Analyzer

  • Suebsomran Anan;Parnichkun Manukid
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.70-78
    • /
    • 2005
  • This paper presents hybrid control of displacement and force in a Medical Tele-Analyzer by disturbance observer-based controller which is robust to internal and external disturbances; model uncertainty, load, and friction for instances. The developed Medical Tele-Analyzer consists of 2 subsystems; doctor-side subsystem and patient-side subsystem. In the doctor side subsystem, an array of displacement sensor is equipped to detect movement of doctor's hand and fingers. The detected information is transmitted to the patient side to be used in medical analysis. On the other hand, the patient-side subsystem consists of an array of displacement actuators, which is used to follow displacement of doctor's hand and fingers. An array of force sensors is used to detect forces between patient and the equipment. Since displacement control in patient side is coupled with force control in doctor side and vice-versa, design of the controller has to take into account this coupling. Not only using in medical tele-analysis, the proposed system can also be used in any tele-displacement-force controls of industrial processes.