• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.029 seconds

Tracking control for multi-axis system using two-degrees-of-freedom controller

  • Park, Ho-Joon;Lee, Je-Hee;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.380-384
    • /
    • 1996
  • This paper represents an adaptive position controller with the disturbance observer for multi-axis servo system. The overall control system consists of three parts : the position controller, the disturbance observer with free parameters and cross-coupled controller which enhances contouring performance by reducing errors. Using two-degrees-of freedom conception, we design the command input response and the closed loop characteristics independently. The servo system can improve the closed loop characteristics without affecting the command input response. The characteristics of the closed loop system is improved by suppressing disturbance torque effectively with the disturbance observer. Moreover, the cross-coupled controller enhances tracking performance. Thus total position control performance is improved. Finally, the performance of the proposed controller shows that it improves the contouring performance along with the reference trajectory in the XY-table.

  • PDF

Performance Enhancement of Optical Disk Drive Servo System using Dual modified Disturbance Observer (광디스크 드라이브 서보 시스템을 위한 수정된 외란관측기)

  • Kim, Moo-Sub;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.738-740
    • /
    • 2004
  • The disturbance observer is effective in enhancing the performance of position control in high speed optical disk drive systems(ODDS). It is known that error based modified disturbance observer (EM-DOB) is more effective structure than general DOB. It has a simple structure and realization, but it loses robustness. We propose a dual modified disturbance observer(Dual mDOB). It consists of internal loop EM-DOB and external loop DOB. Those loops are designed for different objects. We see that the dual mDOB is an effective method for tracking performance.

  • PDF

Robust Control for Rotational Inverted Pendulums Using Output Feedback Sliding Mode Controller and Disturbance Observer

  • Park, Jeong-Ju;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1466-1474
    • /
    • 2003
  • This paper presents a system modeling, controller design and implementation for a rotational inverted pendulum system (RIPS), which is an under-actuated system and has the problem of unattainable velocity state. Two control strategies are applied to the RIPS. One is a sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback. The other is the disturbance observer which estimates disturbance and some modeling errors of RIPS with less computational effort. Some simulations and various kinds of experiments are performed in order to verify that the proposed controller has the ability to control RIPS whose velocity is assumed to be unavailable. The results of the simulations and experiments show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions as well as the robustness to model uncertainties.

Design of a Robust Controller for Position Control of a Small One-Link Robot Arm with Input Time-Delay (입력 시간지연이 존재하는 소형 1축 로봇 팔 위치제어를 위한 강인 제어기 설계)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1179-1185
    • /
    • 2010
  • This paper deals with a robust controller design problem for a small one-link robot arm system subject to input time delay and load variations. The uncertain parameters of the system are considered as a disturbance input. A disturbance observer(DOB) has been designed to alleviate disturbance effects and to compensate performance degradation owing to the time-delay. This paper employs a new DOB structure for non-minimum phase systems together with the Smith predictor. We propose a new controller for reducing the both effects of disturbance and time-delay. In order to test the performance of proposed controller, four different other control laws are compared with the proposed one by computer simulations. The simulation results show the effectiveness of the proposed control method.

Development of the disturbance observer for micro-stepping X-Y stage (마이크로 스텝핑 평판 스테이지의 외란 예측기의 개발)

  • Kim Jung-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.23-31
    • /
    • 2005
  • The purpose of this study is to design a disturbance observer for a micro-stepping stage to eliminate the disturbances from cables, friction, mass unbalance of the moving part, etc. The disturbance observer is designed for air-floating X-Y precision micro-stepping X-Y stage which widely used in stepper machine or semiconductor manufacturing systems. The micro-stepping X-Y stage has a weak point of the variation of characteristics with position locations, which caused by various disturbances. In this study, it will be described that a simple and high throughput disturbance observer algorithm improves the dynamic error and settling time of the micro-stepping stage.

Disturbance suppression and decoupling via eigenstructure assignment

  • Choi, Jae-Weon;Lee, Jang-Gyu;Kang, Taesam;Kang, Taesam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.162-167
    • /
    • 1994
  • An effective and disturbance suppressible controller can be obtained by assigning the left eigenstructure (eigenvalues/left eigenvectors) of a system. However, the disturbance decouplability is governed by the right eigenstructure(eigenvalues/right eigenvectors) of the system. In this paper, in order to obtain a disturbance decouplable as well as effective and disturbance suppressible controller, the concurrent assignment scheme of the left and right eigenstructure is proposed. The biorthogonality property between the left and right modal matrices of a system well as the relations between the achievable right modal matrix and states selection matrices are used to develop the scheme. The proposed concurrent eigenstructure assignment scheme guarantees that the desired eigenvalues are achieved exactly and the desired left and right eigenvectors are assigned to the best possible(achievable) sets of eigenvectors in the least square sense, respectively. A numerical example is presented to illustrate the usefulness of the proposed scheme.

  • PDF

An effect of initial disturbance on the breakup mechanism of liquid jet (초기교란이 액주의 분열기구에 미치는 영향)

  • Seok, J.K.;Park, Y.K.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 1998
  • The present experimental study investigates the effect of an initial disturbance on the breakup mechanism of a liquid column. With varying the maginitude of the inital disturbance, we measure the surface wave of liquid column with adopting laser shadow method and analyze the growth rate of liquid column and breakup frequency. The experimental results show that thebreakup characteristics of liquid column is significantly influenced by the frequency of the initial disturbance. We concluded that the most uniform droplet occurs when the frequency of initial disturbance coincides with the natural frequency of the liquid column.

  • PDF

Design of a Disturbance Observer Using a Second-Order System Plus Dead Time Modeling Technique (시간 지연을 갖는 2차 시스템 모델링 기법을 이용한 외란 관측기 설계)

  • Jeong, Goo-Jong;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.187-192
    • /
    • 2009
  • This paper presents a method for designing a robust controller that alleviates disturbance effects and compensates performance degradation owing to the time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the Pade approximation of time-delay makes the plant non-minimum phase, the classical DOB cannot be applied directly to the system with time-delay. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new controller for reducing the both effects of disturbance and time-delay. Moreover, the closed-loop system can be made robust against uncertain time-delay with the help of a Pill controller tuning method that is based on a second-order plus dead time modeling technique.

Compensation of a Spindle Disturbance using an Electromagnetic Exciter (전자기 가진기를 이용한 스핀들 외란 보상 제어)

  • 안재삼;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.329-329
    • /
    • 2000
  • In this paper, a spindle system using an electromagnetic exciter is proposed to compensate a spindle disturbance such as unbalance and machining force etc A spindle compliance can be readily varied with a disturbance which is generated by the interact ion between the spindle / workpiece structure and the cutting process dynamics. The varied compliance is one of the major constraints that deteriorates the surface quality of workpiece. This paper suggests a compliance compensation by using the EME in the proposed spindle system. To compensate the varied compliance, firstly a spindle system modeling was conducted by using the bond graph. Then the model is simulated by numerical analysis method and an optimal EME position is determined to compensate a disturbance effectively through simulation, which makes the bearing load to be minimized

  • PDF

Optical Disk Drive Servo System using Modified Disturbance Observer (수정된 외란관측기를 이용한 광디스크 드라이브 서보 시스템)

  • Jeong, Jong-Il;Chung, Chung-Choo;Pyo, Hyeon-Bong;Park, Yong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.372-375
    • /
    • 2003
  • Using disturbance observer is effective to enhance tracking performance of system in the presence of disturbances. Various types of disturbance observers have been proposed to improve sensitivity of systems, but they tend to bring poor transient response due to cross coupling of inter-loops. In this paper, we propose dual disturbance observer(Dual DOB) which is designed to reduce the cross coupling. Dual DOB is consist of an internal DOB and an external DOB, that are designed for different object. The Dual DOB is applied to Optical Disk Drive tracking system. It is shown that the Dual DOB has improved performance over conventional DOB via experimental result. There is good agreement between simulation and experimental results.

  • PDF