• Title/Summary/Keyword: distributive ratios

Search Result 4, Processing Time 0.017 seconds

Areal Distribution Ratio of Rock ffes with Geologic Ages in the Gyeonggi-Seoul-Incheon Areas (경기-서울-인천지역 구성암류의 지질시대별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.208-216
    • /
    • 2007
  • Based on digital geologic and geomorphic maps of 1 : 250,000 scale, distributive ratios of rock types were obtained by ArcGIS 9.0 program in the Gyeonggi, Seoul and Incheon areas of the Gyeonggi province. In the Gyeonggi area, 37 rock types are developed, and their geologic ages can be classified into Precambrian, Age-unknown, Triassic, Jurassic, Cretaceous and Quatemary. Among them, distributive ratios are decreasing in the order of Jurassic Daebo granites, Precambrian banded gneiss of Gyeonggi gneiss complex and Quatemary alluvium, all of which comprise about 83.7% of the rock types in the area. In the Seoul and Incheon areas, 10 and 15 rock types are developed, respectively., with the firmer being classified into Precambrian, Jurassic and Quatemary, and the latter into Precambrian, Jurassic, Cretaceous and Quatemary. In the Seoul area, distributive ratios are decreasing in the order of banded gneiss of Gyeonggi gneiss complex, Daebo granites and alluvium, which consist of 95.5% of the rocks in the area. In the Incheon area, distributive ratios are decreasing in the order of alluvium, Daebo granites, banded gneiss of Gyeonggi gneiss complex, reclaimed land, and schists of Gyeonggi gneiss complex, which occupy about 96.2% of the rocks in the area. The ratio of alluvium in the Incheon area is greater than that of Gyeonggi and Seoul areas, and the ratio of reclaimed land in the Incheon area is greater that of the Seoul, which can be attributed to the recent reclamation of the land for the industrial results such as new town development along the coastline of the Gyeonggi Bay.

Areal Distribution Ratios of the Constituent Rocks with the Geologic Ages and Rock Types in the Chungbug-Chungnam-Daejeon Areas (충북-충남-대전지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.191-205
    • /
    • 2008
  • In order to use the geologic information data such as industrialization of rock resources, site enlargement and development planning, distributive ratios of rock types and geologic ages were obtained by the ArcGIS 9.2 program, and digital geologic and geographic maps of 1:250,000 scale, in the Chungbug, Chungnam and Daejeon areas, respectively. In the Chungbug area, 64 rock kinds are developed and their geologic ages can be classified into 8 large groups. In the geologic ages, the ratios are decreasing in the order of Jurassic, Precambrian, Age-unknown, Cretaceous, Quaternary, Cambro-Ordovician and Carboniferous-Triassic ages, all of which comprise most ratios of 98.48% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Cretaceous biotite granite, Quaternary alluvium, Great limestone group, Lower phyllite zone and Meta-sandy rock zone of age-unknown Ogcheon group, Triassic Cheongsan granite, Precambrian granitic gneiss of Gyeonggi gneiss complex, Pebble bearing phyllite zone of age-unknown Ogcheon group and biotite gneiss of Sobaegsan metamorphic complex, all of which comprise the prevailing ratio of 84.27% in the area. In the Chungnam area, 35 rock types are developed and their geologic ages can be classified into 6 large groups. In the geologic ages, the ratios are decreasing in the order of Precambrian, Jurassic and Quaternary ages, which occupy the prevailing ratio of 87.55% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Quaternary alluvium, Precambrian granite and granitic gneiss of Gyeonggi gneiss complex, Cretaceous acidic dykes, Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group and Quaternary reclaimed land, which occupy the ratios of 74.28% in the area. In the Daejeon area, 11 rock types are developed and their geologic ages can be classified into 5 large groups. In the ages, the ratios are decreasing in the order of Jurassic, Age-unknown and Quaternary, which occupy most ratios of 93.40% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Quaternary alluvium and Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group, which occupy the prevailing ratios of 91.09% in the area.

Pharmacokinetics and Excretion into Expired Air of Urea, a Potential Diagnosis Reagent of Helicobacter pylori Infection (헬리코박터 파이로리 균의 진단시약 개발을 위한 요소의 체내동태 및 호기 중 배설)

  • Park, Seung-Hyeok;Shin, Dae-Hwan;Cho, Han-Jun;Yim, Ju-Bin;Lim, Sung-Cil;Han, Kun;Chung, Youn-Bok
    • Korean Journal of Clinical Pharmacy
    • /
    • v.22 no.2
    • /
    • pp.160-166
    • /
    • 2012
  • Purpose: The purpose of the present study was to investigate the pharmacokinetics of urea, a new potential diagnosis reagent of Helicobacter pylori infection. Methods: Considering the mechanism of urea breath test, we determined the excretion of urea in expired air after its oral administration in rats and beagle dogs at the dose of 2 mg/kg (including 50 mCi/mmol $^{14}C$-urea 50 ${\mu}Ci/kg$ for rats and 13.5 ${\mu}Ci/kg$ for dogs). Results: Urea was rapidly disappeared from the blood circulation by 1 hr after its i.v. bolus injection, followed by a slow disappearance by 24 hr. The half-lives at the distributive phase ($t_{1/2{\alpha}}$) and post-distributive phase ($t_{1/2{\beta}}$) were 2 min and 6 hr, respectively. The bioavailability of urea was 64.3% after its oral administration. The values of the volume of distribution ($V_{dss}$) and the total body clearance ($CL_t$) after the oral administration were compatible with those after i.v. administration. The recovery of urea in the bile was about 0.1% of the dose by 24 hr after its oral administration. Urea was extensively eliminated in the urine by 48 hr. The recovery ratios of urea in the urine and expired air were about 86.8% and 2.99% of the dose by 48 hr, respectively. Moreover, urea was mostly distributed from the blood circulation to the kidney, followed by being eliminated in the urine without metabolism. The concentration of urea in the kidney was 4.0 times higher than that of plasma at 40 min after its oral administration. Conclusions: These findings indicated that oral route appears to be available for the administration of urea. Orally administered urea, thus, was considered to be useful for the diagnosis of Helicobacter pylori infection.

Human Development Inequality Index and Cancer Pattern: a Global Distributive Study

  • Rezaeian, Shahab;Khazaei, Salman;Khazaei, Somayeh;Mansori, Kamyar;Moghaddam, Ali Sanjari;Ayubi, Erfan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.201-204
    • /
    • 2016
  • This study aimed to quantify associations of the human development inequality (HDI) index with incidence, mortality, and mortality to incidence ratios for eight common cancers among different countries. In this ecological study, data about incidence and mortality rates of cancers was obtained from the Global Cancer Project for 169 countries. HDI indices for the same countries was obtained from the United Nations Development Program (UNDP) database. The concentration index was defined as the covariance between cumulative percentage of cancer indicators (incidence, mortality and mortality to incidence ratio) and the cumulative percentage of economic indicators (country economic rank). Results indicated that incidences of cancers of liver, cervix and esophagus were mainly concentrated in countries with a low HDI index while cancers of lung, breast, colorectum, prostate and stomach were concentrated mainly in countries with a high HDI index. The same pattern was observed for mortality from cancer except for prostate cancer that was more concentrated in countries with a low HDI index. Higher MIRs for all cancers were more concentrated in countries with a low HDI index. It was concluded that patterns of cancer occurrence correlate with care disparities at the country level.