• Title/Summary/Keyword: distributed sensor networks

Search Result 262, Processing Time 0.031 seconds

A Relative Location based Clustering Algorithm for Wireless Sensor Networks (센서의 상대적 위치정보를 이용한 무선 센서 네트워크에서의 클러스터링 알고리즘)

  • Jung, Woo-Hyun;Chang, Hyeong-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.212-221
    • /
    • 2009
  • This paper proposes a novel centralized clustering algorithm, "RLCA : Relative Location based Clustering Algorithm for Wireless Sensor Networks," for constructing geographically well-distributed clusters in general WSNs. RLCA does not use GPS and controls selection-rate of cluster-head based on distances between sensors and BS. We empirically show that RLCA's energy efficiency is higher than LEACH's.

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

Hybrid Distributed Stochastic Addressing Scheme for ZigBee/IEEE 802.15.4 Wireless Sensor Networks

  • Kim, Hyung-Seok;Yoon, Ji-Won
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.704-711
    • /
    • 2011
  • This paper proposes hybrid distributed stochastic addressing (HDSA), which combines the advantages of distributed addressing and stochastic addressing, to solve the problems encountered when constructing a network in a ZigBee-based wireless sensor network. HDSA can assign all the addresses for ZigBee beyond the limit of addresses assigned by the existing distributed address assignment mechanism. Thus, it can make the network scalable and can also utilize the advantages of tree routing. The simulation results reveal that HDSA has better addressing performance than distributed addressing and better routing performance than other on-demand routing methods.

Min-Distance Hop Count based Multi-Hop Clustering In Non-uniform Wireless Sensor Networks

  • Kim, Eun-Ju;Kim, Dong-Joo;Park, Jun-Ho;Seong, Dong-Ook;Lee, Byung-Yup;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.13-18
    • /
    • 2012
  • In wireless sensor networks, an energy efficient data gathering scheme is one of core technologies to process a query. The cluster-based data gathering methods minimize the energy consumption of sensor nodes by maximizing the efficiency of data aggregation. However, since the existing clustering methods consider only uniform network environments, they are not suitable for the real world applications that sensor nodes can be distributed unevenly. To solve such a problem, we propose a balanced multi-hop clustering scheme in non-uniform wireless sensor networks. The proposed scheme constructs a cluster based on the logical distance to the cluster head using a min-distance hop count. To show the superiority of our proposed scheme, we compare it with the existing clustering schemes in sensor networks. Our experimental results show that our proposed scheme prolongs about 48% lifetime over the existing methods on average.

A Secure Energy-Efficient Routing Scheme Using Distributed Clustering in Wireless Sensor Networks (무선 센서 네트워크에서 분산 클러스터링을 이용한 안전한 에너지 효율적인 라우팅 기술)

  • Cheon, EunHong;Lee, YonSik
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.3-9
    • /
    • 2016
  • The wireless sensor networks have become an economically viable monitoring solution for a wide variety of civilian and military applications. The main challenge in wireless sensor networks is the secure transmission of information through the network, which ensures that the network is secure, energy-efficient and able to identify and prevent intrusions in a hostile or unattended environment. In that correspondence, this paper proposes a distributed clustering process that integrates the necessary measures for secure wireless sensors to ensure integrity, authenticity and confidentiality of the aggregated data. We use the notion of pre-distribution of symmetric and asymmetric keys for a secured key management scheme, and then describe the detailed scheme which each sensor node within its cluster makes use of the pre-distribution of cryptographic parameters before deployment. Finally, we present simulation results for the proposed scheme in wireless sensor network.

USN Channel Establishment Algorithm for Sensor Authentication and Anti-collision (센서 인증과 충돌 방지를 위한 USN 채널 확립 알고리즘)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.74-80
    • /
    • 2007
  • Advances in electronic and computer technologies have paved the way for the proliferation of WSN(wireless sensor networks). Accordingly, necessity of anti-collusion and authentication technology is increasing on the sensor network system. Some of the algorithm developed for the anti-collision sensor network can be easily adopted to wireless sensor network platforms and in the same time they can meet the requirements for sensor networks like: simple parallel distributed computation, distributed storage, data robustness and auto-classification of sensor readings. To achieve security in wireless sensor networks, it is important to be able to establish safely channel among sensor nodes. In this paper, we proposed the USN(Ubiquitous Sensor Network) channel establishment algorithm for sensor's authentication and anti-collision. Two different data aggregation architectures will be presented, with algorithms which use wavelet filter to establish channels among sensor nodes and BIBD (Balanced Incomplete Block Design) which use anti-collision methods of the sensors. As a result, the proposed algorithm based on BIBD and wavelet filter was made for 98% collision detection rate on the ideal environment.

Network Time Protocol Extension for Wireless Sensor Networks (무선 센서 네트워크를 위한 인터넷 시각 동기 프로토콜 확장)

  • Hwang, So-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2563-2567
    • /
    • 2011
  • Advances in smart sensors, embedded systems, low-power design, ad-hoc networks and MEMS have allowed the development of low-cost small sensor nodes with computation and wireless communication capabilities that can form distributed wireless sensor networks. Time information and time synchronization are fundamental building blocks in wireless sensor networks since many sensor network applications need time information for object tracking, consistent state updates, duplicate detection and temporal order delivery. Various time synchronization protocols have been proposed for sensor networks because of the characteristics of sensor networks which have limited computing power and resources. However, none of these protocols have been designed with time representation scheme in mind. Global time format such as UTC TOD (Universal Time Coordinated, Time Of Day) is very useful in sensor network applications. In this paper we propose network time protocol extension for global time presentation in wireless sensor networks.

Semijoin-Based Spatial Join Processing in Multiple Sensor Networks

  • Kim, Min-Soo;Kim, Ju-Wan;Kim, Myoung-Ho
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.853-855
    • /
    • 2008
  • This paper presents an energy-efficient spatial join algorithm for multiple sensor networks employing a spatial semijoin strategy. For optimization of the algorithm, we propose a GR-tree index and a grid-ID-based spatial approximation method, which are unique to sensor networks. The GR-tree is a distributed spatial index over the sensor nodes, which efficiently prunes away the nodes that will not participate in a spatial join result. The grid-ID-based approximation provides great reduction in communication cost by approximating many spatial objects in simpler forms. Our experiments demonstrate that the algorithm outperforms existing methods in reducing energy consumption at the nodes.

  • PDF

Limited Flooding Scheme in Mobile Sensor Networks

  • Lee, Ick-Soo;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1225-1230
    • /
    • 2015
  • Mobile Sensor Networks (MSN) is composed of a distributed collection of mobile sensor nodes, each of which has sensing, computation, communication and locomotion capabilities. Since the routing path can be broken when some nodes on the path move to other position, MSN may have a high rate of communication failure. So, MSN has to provide a means for low-cost and low-power routing to support mobility of sensor nodes. In this paper, a limited flooding scheme for routing in MSN is proposed to allow efficient energy utilization without requiring any complicated tasks for path maintenance.