• Title/Summary/Keyword: disposal cell

Search Result 64, Processing Time 0.03 seconds

Angiogenic Induction by Trichinella spiralis Infection through Thymosin β4 (티모신베타4에의한 선모충(Trichinella spiralis) 감염의 혈관신생 유도 기작)

  • Ock, Mee Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1177-1182
    • /
    • 2013
  • Trichinella spiralis (T. spiralis) has been reported to induce angiogenesis and a supply of nutrients and to act as a reliable waste disposal system by induction of the expression of the angiogenic molecule vascular endothelial cell growth factor (VEGF) during nurse cell formation. However, the mechanism underlying the induction of VEGF in nurse cells by T. spiralis has not yet been defined. Some research has pointed to the possibility of hypoxia in nurse cells, but whether hypoxia occurs in infected muscle or nurse cells has not been studied. It is also a matter of debate whether hypoxia induces the expression of VEGF and subsequent angiogenesis in infected muscle. Recent studies showed that thymosin ${\beta}4$, a potent VEGF-inducing protein, was expressed at a very early stage of muscle infection by T. spiralis, suggesting that VEGF is induced at an early stage in nurse cells. Furthermore, hypoxia was not detected in any nurse cell stage but was detected in inflammatory cells. The findings suggest that induction of angiogenesis by VEGF in T. spiralis-infected nurse cells is mediated by thymosin ${\beta}4$ and unrelated to hypoxia.

DISPOSAL OF FAR-FIELD VORTEX PARTICLES FOR LONG-TERM SIMULATIONS IN PENALIZED VICMETHOD (Penalized VIC 방법에서 장시간 유동 해석을 위한 원거리 와도 입자 처리)

  • Jo, E.B.;Lee, S.-J.;Suh, J.-C.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • A penalized VIC method offers an efficient hybrid particle-mesh algorithm to simulate an incompressible viscous flow passing a solid body in an infinite domain. In this manner, the computational domain needs to be restricted to a relatively small region to reduce computational cost which would be very high in case of using a large domain. In this paper, we present how to dispose of far-field particles to avoid an unnecessarily large computational domain. The present approach constraints expansion of the domain and thus prevents the incremental computational cost. To validate the numerical approach, a flow around an impulsively started sphere was simulated for Reynolds numbers of 100 and 1000.

Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells

  • Kita, Shunbun;Shimomura, Iichiro
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.771-780
    • /
    • 2022
  • The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.

Full Scale Study on The Optimum Conditions for Disposal of Sewage Sludge Cake by Using Continual Thermal Wind Dryer and Pyrolysis (연속적 열풍건조/열분해 Full Scale 장치를 이용한 하수슬러지 케익 처분을 위한 최적조건 연구)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.29-37
    • /
    • 2008
  • The objective of this research is to evaluate the optimum treatment methods for disposal sludge cake at different temperatures and periods of time. The disposal dehydrated sewage cake used in this study was obtained from N wastewater treatment plant in the P City. This system consists of continuous conveyer thermal dryer and pyrolysis. The continual conveyer thermal dryer was operated to evaluate the optimum conditions with temperature settings, ranges from 130 to $180^{\circ}C$, loading rates of 650~750 kg/hr and operating times of 110~120 minutes. The continual pyrolysis was also operated to evaluate the optimum conditions with temperature settings, ranges from 650 to $750^{\circ}C$, loading rates of 100~158 kg/hr and operating times of 20~40 minutes. The sewage sludge cake has a moisture content of 78~80% (wt) which decreased up to 1~3%(wt) resulted in breaking of cell wall after operating the continuous conveyer thermal dryer and pyrolysis. Important parameters which were operating times, moisture contents, loading rates, conveyer velocities and rotary velocities effects on the thermal kinetics and dynamics were investigated to evaluate the optimum conditions for the continual thermal dryer and pyrolysis.

  • PDF

A Bridge Transported Bilateral Force-Reflecting Servo-Manipulator for Maintenance of Nuclear Pyroprocessing Equipment

  • Park, B.S.;Jin, J.H.;Ko, B.S.;Lee, J.K.;Yoon, J.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2226-2230
    • /
    • 2005
  • The Advanced Spent Fuel Conditioning Process (ACP), which is a pre-disposal treatment process for spent fuel is being developed at the Korea Atomic Energy Research Institute (KAERI). The ACP equipment is operated in an intense radiation field as well as in a high temperature. Thus, the equipment is designed in consideration of the remote handling and maintenance. This paper describes a Bridge Transported Bilateral Force-Reflecting Servo-Manipulator (BTSM) system, which is being developed to overcome the limitation of access that is a drawback of the mechanical Master-Slave Manipulators (MSMs), which are mounted on the ACP hot cell wall for the operation and the maintenance of the ACP equipment. The BTSM system was manufactured and temporally installed at the mockup to test its performance. The manufactured BTSM system will be installed at the ACP hot cell on June 2005 after the accomplishment of the performance test. The BTSM system consists of four components: a transporter with a telescoping tubeset, a slave manipulator, a master manipulator, and a remote control system. This system will highly increase the volume of coverage for the operation and maintenance of the ACP equipment.

  • PDF

Proteotoxic Stress and Cell Lifespan Control

  • Cenci, Simone;Pengo, Niccolo;Sitia, Roberto
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • Eukaryotic cells continuously integrate intrinsic and extrinsic signals to adapt to the environment. When exposed to stressful conditions, cells activate compartment-specific adaptive responses. If these are insufficient, apoptosis ensues as an organismal defense line. The mechanisms that sense stress and set the transition from adaptive to maladaptive responses, activating apoptotic programs, are the subject of intense studies, also for their potential impact in cancer and degenerative disorders. In the former case, one would aim at lowering the threshold, in the latter instead to increase it. Protein synthesis, consuming energy for anabolic processes as well as for byproducts disposal, can be a significant source of stress, particularly when difficult-to-fold proteins are produced. Recent work from our and other laboratories on the differentiation of antibody secreting cells, revealed a regulatory circuit that integrates protein synthesis, secretion and degradation (proteostasis), into cell lifespan determination. The apoptotic elimination - after an industrious, yet short lifetime - of terminal immune effectors is crucial to maintain immune homeostasis. Linking proteostasis to cell death, this paradigm might prove useful for biotechnological purposes, and the design of novel anti-cancer therapies.

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

Analysis of Flexural Strength of Seedling Pots Made by a Pulp-Molding Machine under Different Water Contents (펄프 몰드식 육묘포트의 성형조건 및 수분 흡습에 따른 굴곡 하중 특성 분석)

  • Song, D.B.;Jeong, J.W.;Kim, C.H.;Huh, M.R.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.43-51
    • /
    • 2009
  • Paper mill sludges are discharged around 870,000 M/T annually. Only 30% of the paper mill sludge have been recycled and the rest has been disposed by land fill, incineration, ocean abandonment and other ways. Because of overall prohibition of sludge disposal by London Dumping Convention in 2012, a urgent counter measure for paper mill sludge must be provided. In this paper, some basic experiments were carried out to develop a tray cell pot using paper mill sludge for increasing the recycling potential of the wasted sludge. To establish the manufacturing parameters, the tray cell pots were made with three types of materials including virgin pulp, old news paper and corrugated board mixed in a blend tank of a molding machine. The bending force and moisture content of the produced tray cell pots was measured to confirm the application capability. The tray cell pot could be manufactured under the condition of over 20% of virgin pulp, 40% of old news paper added. However, the corrugated board could not be used because of the glutinous substance included. The produced tray cell pot absorbed water very easily and the bending force decreased rapidly. The waterproof material must be used to applicate the produced tray cell pot in plant growing fields.

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production (미세조류 탈지세포잔류물의 미생물 배양 및 바이오에너지 생산으로의 재활용)

  • Dang, Nhat Minh;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.487-496
    • /
    • 2021
  • Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.

A Development of Recycling Technology of Solar Cell Wafering Slurry (태양전지 Wafering Slurry 재생기술 개발에 관한 연구)

  • Na, Won-Shik;Lee, Jae-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.426-431
    • /
    • 2010
  • 68% of the manufacturing costs of solar cell wafer can be attributed to the slurry. The recycling of slurries is mandatory for reducing the costs of manufacturing wafering production, and the disposal of industrial waste, as well as for cutting down pollution levels. Slurries are currently being recycled using the centrifuge(decanter) method. However, this method is less than optimal as it does not completely remove the fine particles, leading to low quality. Also, be cause of the incomplete separation from the oil, it causes the impurities in the dried slurries. This study aims to develope a new recycling technology that overcomes the flaws of the centrifuge by utilizing chemicals. It will provide a total solution to the crucial process of recycling slurries in the making of solar cell wafer, by increasing the efficiency and renewable rate.