• Title/Summary/Keyword: displacement-controlled method

Search Result 115, Processing Time 0.022 seconds

A Study on Analysis of Non linear Frequency Response of Electro-Hydraulic Systems (전기 유압 시스템의 비선형 주파수 응답 해석에 관한 연구)

  • Lee, Yong-Joo;Jun, Bong-Geon;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.246-252
    • /
    • 1999
  • In this paper, the frequency response characteristics of the velocity controlled EHS system obtained by linear simulation method, nonlinear simulation method, and experimentation are compared one another, in order to verify propriety of the linearization method in case of analysis of hydraulic systems. The Bode diagrams are obtained by transforming time domain data of experimental results and nonlinear simulated ones with Fourier transform. The results of nonlinear simulation are more similar to the frequency response of the real systems than those of linear simulation. It is found that nonlinearity of hydraulic systems is mainly occurred from servo valve, and nonlinearity is increased as displacement of servo valve spool increases.

  • PDF

On Development of Vibration Analysis Algorithm of Beam with Multi - Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 (II))

  • 문덕홍;최명수;홍숭수;강현석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 1997
  • The authors apply the transfer influence coefficient method to the 3. dimensional vibration analysis of beam with multi - joints and formulate a general algorithm to analyse the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure which is mainly found in the robot arms, cranes and so on, has some crooked parts, subsystems and joints, but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at node which the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

AN ANALYSIS OF STRESS DISTRIBUTION IN THE CASE OF UNILATERAL MOLAR EXPANSION WITH PRECISION LINGUAL ARCH BY FINITE ELEMENT METHOD (구치 편측확장을 위한 Precision Lingual Arch 적용시 응력분포에 관한 유한요소법적 연구)

  • Koo, Bon-Chan;Sohn, Byung-Wha
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.721-733
    • /
    • 1994
  • Orthodontic tooth movement is closely related to the stress on the periodontal tissue. In this research the finite element method was used to observe the stress distribution and to find the best condition for effective tooth movement in the case of unilateral molar expansion. The author constructed the model of lower dental arch of average Korean adult and used $.032'\times.032'\times60mm$ TMA wire. The wire was deflected in the horizontal and vertical direction to give the 16 conditions. The following results were obtained ; 1. When the moment and force were controlled properly the movement of anchor tooth was minimized and the movement of moving tooth was maximized. 2. As the initial horizontal deflection increased the buccal displacement of both teeth was also increased. As the initial horizontal deflection increased the lingual movement of anchor tooth and the buccal movement of moving tooth increased. 3. When the initial horizontal and vertical deflection rate was 1.5 the effective movement of moving tooth was observed with minimal displacement of anchor tooth.

  • PDF

Tactile feedback device using repulsive force of the magnets for teleoperation (자석의 반발력을 이용한 원격조종용 촉각궤환장치)

  • Ahn, Ihn-Seok;Moon, Yong-Mo;Lee, Jung-Hun;Park, Jong-Oh;Lee, Jong-Won;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper we developed a tactile feedback device using repulsive force of magnets. The force of the tactile feedback device was derived from the Maxwell's stress method by using the concept of magnetic charge. Magnetic repulsive force is linear function with respect to current and nonlinear to displacement. Experimental data shows these characteristics. To compensate the fact that the presented tactile feedback device can not be controlled by close loop control, we developed a simulation model which predicts output displacement and force by using Runge-Kutta method. And, this paper evaluated the presented tactile feedback device and compared it with commercial tactile feedback devices.

  • PDF

Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive (슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석)

  • 박대경;전규찬;이성진;장동섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.694-699
    • /
    • 2002
  • As the demand for slim laptops requires ion'-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method far anti-vibration mechanism with respect to the existing servo gain plot. This method verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

  • PDF

RESEARCH ON ULTRA LOW EMISSION TECHNOLOGY FOR LARGE DISPLACEMENT MOTORCYCLES

  • Kono, T.;Miyata, H.;Uraki, M.;Yamazaki, R.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.277-282
    • /
    • 2006
  • With the aim of achieving half the regulated value of EURO-3 Emission Regulations, an ultra low emission motorcycle has been developed based on a motorcycle with an 1800 $cm^3$, horizontal opposed 6-cylinder engine. For the fuel supply system, an electronically controlled fuel injection system was applied. For the emission purification system, three-way catalysts, a feedback control system with a LAF(Linear Air-Fuel ratio) sensor, and a secondary air induction system were applied. To reduce CO and HC emissions during cold starting, an early catalyst activation method combining RACV(Rotary Air Control Valve) and retarded ignition timing was applied. After the catalyst activation, air-fuel ratio was controlled to maximize the purification ratio of the catalyst according to vehicle speed. For the air-fuel ratio control system, the LAF sensor was used. Furthermore, fine adjustment by the LAF feedback control reduced torque fluctuation due to the air-fuel ratio change. As a result, smooth ride feeling was maintained. Owing to these technologies, half the regulated value of EURO-3 has been achieved without any negative impact to the large-scaled motorcycles' drivability. This paper presents the developed ultra low emission technologies including the control method using an LAF sensor.

A Study on the Optimal Design for Aluminum Boom Shape in High Ladder Vehicles (고가사다리차의 알루미늄 붐 형상의 최적설계에 관한 연구)

  • Kim, Hong-Gun;Nah, Seok-Chan;Hong, Dong-Pyo;Cho, Nam-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.96-102
    • /
    • 2007
  • An Optimal shape design of the boom system in high ladder vehicles is performed using 3-D finite element method (FEM). Results of structural analyses providing displacements, stresses are implemented for the optimum shape design. Lanzcos algorithm is used for the modal analysis in order to find natural frequencies. The optimal shape including cross sectional thickness and length of the boom system is controlled by the subproblem method besed on displacement and Von Mises stress. It is found that a plenty of materials can be saved by using shape design optimization in high ladder vehicles. It is also found that the natural frequency is increased until 6th mode and maintained similarly or decreased after 6th mode.

On Development of Vibration Analysis Algorithm of Beam with Multi-Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 II)

  • 문덕홍;최명수;홍승수;강현석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.203-209
    • /
    • 1996
  • The authors apply the transfer influence coefficient method to the 3-dimensional vibration analysis of beam with multi-joints and formulate a general algorithm to analysis the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure, which is mainly founded in the robot arms, cranes and so on, has some crooked parts, subsystems and joints but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at which node the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive (슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석)

  • 박대경;전규찬;이성진;장동섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.833-839
    • /
    • 2002
  • As the demand for slim laptops requires low-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method for anti-vibration mechanism with respect to the existing servo gain plot. Thismethod verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems (고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.