• Title/Summary/Keyword: discrete-element

Search Result 686, Processing Time 0.022 seconds

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.

A Transient Analysis in Bicycle Shifting using A Discrete Chain Model (이산화 체인 모델을 이용한 자전거 변속 과도상태 해석)

  • Kim, Jungyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.25-30
    • /
    • 2013
  • This article deals with the transient analysis in bicycle shifting using a discrete chain model. Among the various components of a bicycle, we focused in the power-transmissions on the contact points between the chain element and sprocket. And by imposing kinematic motions on the front and rear derailleurs, we analyzed the shifting mechanism for increasing the rotational speed of rear wheel. In order to build the dynamic analysis model, we first tore down the real bicycle and measured each component's design parameters. Then we made 3-dimensional CAD models for each component related to the power transmission of a bicycle. Using the converted 3-dimensional dynamic model for the simulation program, we performed non-shifting and shifting dynamic analysis. As a result, we investigated the dynamic behaviors of a discrete chain model focused on the interaction between the chain and sprocket wheel.

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.43-56
    • /
    • 2010
  • The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.

Modelling of Railway Tracks for Wave Propagation along Railway Tracks at High Frequencies (철로를 따라 전파되는 파동 해석을 위한 고주파수 대역 철로 모델링)

  • Ryue, Jung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • It was reported recently that railpads can be included as a continuous elastic support of the rail and the model was justified from experiments. In general, however, railpads are installed discretely on sleepers with a regular span. The effect of the discrete railpad was not clearly examined so far in such a high frequency range. In this paper, the effect of the railpads in track modelling for high frequencies is investigated by means of the finite element analysis. To do that, the railpads are regarded as 'a continuous elastic support' and 'a discrete elastic support' in this paper. The dispersion relations and decaying features are predicted and compared between the two models up to 80 kHz.

Damage detection in stiffened plates by wavelet transform

  • Yang, Joe-Ming;Yang, Zen-Wei;Tseng, Chien-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.126-135
    • /
    • 2011
  • In this study, numerical analysis was carried out by using the finite element method to construct the first mode shape of damaged stiffened plates, and the damage locations were detected with two-dimensional discrete wavelet analysis. In the experimental analysis, four different damaged stiffened structures were observed. Firstly, each damaged structure was hit with a shaker, and then accelerometers were used to measure the vibration responses. Secondly, the first mode shape of each structure was obtained by using the wavelet packet, and the location of cracks were also determined by two-dimensional discrete wavelet analysis. The results of the numerical analysis and experimental investigation reveal that the proposed method is applicable to detect single crack or multi-cracks of a stiffened structure. The experimental results also show that fewer measurement points are required with the proposed technique in comparison to those presented in previous studies.

Predicted Air Flow Around Objects Using the Discrete Vortex Method

  • Kim, Tae-Hyeung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.347-357
    • /
    • 1993
  • The Lagrangian grid-free numerical method, the discrete vortex method, was applied to solve the Navier-Stokes euqations. This method avoids the introduction of numerical viscosity swamping the real physical viscosity at high Reynolds number, unlike Eulerian method, e.g. finite difference and element methods. The boundary integral equation method for the potential flow solution was included to make the discrete vortex method more feasible for complex geometries. The fast adaptive multipole expansion method was incorporated to reduce the computational time from $O(N^2)$ to O(N) for the computations of vortex-vortex interactions. The test problems were air flow around one circular cylinder and two circular cylinders in tandem with various gaps. The numerical results were in excellent gareement with the experimental and other computational results. The applicabilty of the method was discussed with the indoor and the outdoor air pollution problems, especially the contaminant transport in the recirculation regions.

  • PDF

A Study on Modeling and Analysis of Rock Characteristics at Depth (대심도 암반특성의 모델링 및 해석에 대한 고찰)

  • Cho, Nam-Kak;Shin, Sung-Ho;Jeong, Yong-Jin;Song, Han-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.591-604
    • /
    • 2009
  • This paper presents some important issues in modeling rock behaviour around an underground opening at depth which characterized as stress-induced fractural failure of rock. Unlike other conventional modeling approaches, stress-induced rock failure is highly complex process due to its own heterogeneous and discrete natures. Because of this complexity, many researchers has been struggled to mimic such processes as close as possible to reality with various approaches in both analytical, and numerical approaches for past few decades. Such approaches which are based on continuum mechanics, analytical fracture mechanics, and DEM(Discrete Element Method) were explored in this paper, and fundamental shortcomings for each approaches were illustrated here. In addition, DEM approach using $PFC^{2D}$(Particle Flow Code) was also implemented and illuminated in this paper and discuss the improvement and considerations for the future research.

  • PDF

Distinct Element Modelling of Stacked Stone Pagoda for Seismic Response Analysis (지진응답 해석을 위한 적층식 석탑의 개별요소 모델링)

  • Kim, Byeong Hwa;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2018
  • It is inevitable to use the distinct element method in the analysis of structural dynamics for stacked stone pagoda system. However, the experimental verification of analytical results produced by the discrete element method is not sufficient yet, and the theory of distinct element method is not universal in Korea. This study introduces how to model the stacked stone pagoda system using the distinct element method, and draws some considerations in the seismic analysis procedures. First, the rocking mode and sliding mode are locally mixed in the seismic responses. Second, the vertical stiffness and the horizontal stiffness on the friction surface have the greatest influence on the seismic behavior. Third, the complete seismic analysis of stacked stone pagoda system requires a set of the horizontal, vertical, and rotational velocity time histories of the ground. However, earthquake data monitored in Korea are limited to acceleration and velocity signals in some areas.

An Isoparmetric Kiscrete Joint Element with Joint Surface Degradation (절리면 거\ulcorner각의 손상을 고려한 개별체 절리 유한요소)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.20-30
    • /
    • 1997
  • A discrete joint finite element with joint surface degradation was developed to investigate the shear behavior of rough rock joint. Isoparametric formulation was used for facilitating the implementation of the element in existing Finite Element Codes. The elasto-plastic joint deformation model with the discontinuity constitutive law proposed by Plesha was applied to the element. The reliability of the developed finite element code was successfully testified through numerical direct shear tests conducted under both constant normal stress and constant normal displacement conditions. The result of the numerical direct shear test showed that the code can capture characteristic deformation features envisaged in the direct shear test of rough rock joint.

  • PDF

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.