• 제목/요약/키워드: discrete time approximation method

검색결과 51건 처리시간 0.035초

Design of a Discrete Flux Observer by the Power Series Approximation

  • Kim, Kyung-Seo;Kim, Il-Han
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.304-310
    • /
    • 2011
  • The power series approximation method is proposed for real time implementations of a discrete flux observer. The proposed method improves the performance of the discrete flux observer in the case of a low sampling rate and high speed range, where the simple discrete flux observer converted by the Euler method cannot estimate the actual flux precisely. The performance of discrete flux observers with different orders of approximation is compared to find out the proper order of approximation. The validity of the proposed method is verified through simulation and experiment.

시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법 (A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses)

  • 정인승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF

이산 시간 접근 방법을 사용하는 2 개의 직렬계 비동일 부품 고장의 와이블 분포 모수의 베이시안 추정에 대한 타당성 조사 (A Feasibility Study on Bayesian Inference of Parameters of Weibull Distributions of Failures for Two Non-identical Components in Series System by using Discrete Time Approximation Method)

  • 정인승
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1144-1150
    • /
    • 2009
  • This paper investigates the feasibility of the Bayesian discrete time approximation method to estimate the parameters of Weibull distributions of failures for two non-identical components connected in series system. A Bayesian model based on the discrete time approximation method is formulated to infer the Weibull parameters of two non-identical components with the failure data of the virtual tests. The study of this paper comes to a conclusion that the method is feasible only for some special cases under the given constraints on the concerned parameters.

이산시 쌍일차 계통에서 연속적 근사화 방법을 이용한 최적제어기 설계 (Design of an optimal controller for the discrete time bilinear system by using a successive approximation method)

  • 김범수;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.591-593
    • /
    • 1999
  • The finite time optimum regulation problem of a discrete time bilinear system with a quadratic performance criterion is obtained in terms of a sequence discrete algebraic Lyapunov equations. Our new method is based on the successive approximations. This algorithm saves the computation time to solve the optimal problem, and the design procedure is illustrated for an example.

  • PDF

이감직신간 제어계에 있어서 Routh안정기열과 MSE 을 이용한 새로운 혼합형 모델 절기법 (A New Combined Approximation for the Reduction of Discrete-Time Systems Using Routh Stability Array and MSE)

  • 권오신;김성중
    • 대한전기학회논문지
    • /
    • 제36권8호
    • /
    • pp.584-593
    • /
    • 1987
  • A new combined approximation method using Routh stability array and mean-square error (MSE) method is proposed for deriving reduced-order z-transter functions for discrete time systems. The Routh stability array is used to obtain the reduced-order denominator polynomial, and the numerator polynomial is obtained by minimizing the mean-square error between the unit step responses of the original system and reduced model. The advantages of the new combined approximation method are that the reduced model is always stable provided the original model is stable and the initial and steady-state characteristics of the original model can be preserved in the reduced model.

강인 지능형 디지털 재설계 방안 연구 (Robust Intelligent Digital Redesign)

  • 성화창;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

복수휴가형 이산시간 GI/G/1 대기체계에 대한 수정부가변수법 (On the Modified Supplementary Variable Technique for a Discrete-Time GI/G/1 Queue with Multiple Vacations)

  • 이두호
    • 대한산업공학회지
    • /
    • 제42권5호
    • /
    • pp.304-313
    • /
    • 2016
  • This work suggests a new analysis approach for a discrete-time GI/G/1 queue with multiple vacations. The method used is called a modified supplementary variable technique and our result is an exact transform-free expression for the steady state queue length distribution. Utilizing this result, we propose a simple two-moment approximation for the queue length distribution. From this, approximations for the mean queue length and the probabilities of the number of customers in the system are also obtained. To evaluate the approximations, we conduct numerical experiments which show that our approximations are remarkably simple yet provide fairly good performance, especially for a Bernoulli arrival process.

Radial basis collocation method for dynamic analysis of axially moving beams

  • Wang, Lihua;Chen, Jiun-Shyan;Hu, Hsin-Yun
    • Interaction and multiscale mechanics
    • /
    • 제2권4호
    • /
    • pp.333-352
    • /
    • 2009
  • We introduce a radial basis collocation method to solve axially moving beam problems which involve $2^{nd}$ order differentiation in time and $4^{th}$ order differentiation in space. The discrete equation is constructed based on the strong form of the governing equation. The employment of multiquadrics radial basis function allows approximation of higher order derivatives in the strong form. Unlike the other approximation functions used in the meshfree methods, such as the moving least-squares approximation, $4^{th}$ order derivative of multiquadrics radial basis function is straightforward. We also show that the standard weighted boundary collocation approach for imposition of boundary conditions in static problems yields significant errors in the transient problems. This inaccuracy in dynamic problems can be corrected by a statically condensed semi-discrete equation resulting from an exact imposition of boundary conditions. The effectiveness of this approach is examined in the numerical examples.

Frequency-Domain Balanced Stochastic Truncation for Continuous and Discrete Time Systems

  • Shaker, Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.180-185
    • /
    • 2008
  • A new method for relative error continuous and discrete time model order reduction is proposed. The reduction technique is based on two recently developed methods, namely frequency domain balanced truncation within a frequency bound and inner-outer factorization techniques. The proposed method is of interest for practical model order reduction because in this context it shows to keep the accuracy of the approximation as high as possible without sacrificing the computational efficiency. Numerical results show the accuracy and efficiency enhancement of the method.

Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation

  • Wang, Dongdong;Xie, Pinkang;Lu, Hongsheng
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.107-125
    • /
    • 2013
  • A strain smoothing meshfree formulation with stabilized conforming nodal integration is presented for modeling the consolidation process in saturated porous media. In the present method, nodal strain smoothing is consistently introduced into the meshfree approximation of strain and pore pressure gradient variables associated with the saturated porous media. Meanwhile, in order to achieve a consistent numerical implementation, a smoothing approximation of the meshfree shape function within a nodal representative domain is also proposed in the stiffness construction. The resulting discrete system of equations is all expressed in smoothed nodal measures that are very efficient for numerical evaluation. Subsequently the space-time fully discrete equations are further established by the generalized trapezoidal rule for time integration. The effectiveness of the proposed meshfree consolidation analysis method is systematically illustrated by several benchmark problems.