• Title/Summary/Keyword: discrete system

Search Result 2,487, Processing Time 0.043 seconds

Stabilization of discrete-time semilinear heat processes by boundary inputs

  • Koay, S.P.;Sano, H.;Ito, K.;Kunimatsu, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1284-1288
    • /
    • 1990
  • In this paper, we are going to study the stabilization of the semilinear heat equation with inhomogenous boundary conditions, whose solutions are not (in general) stable. Here, we use the discrete-time feedback inputs through the boundary of geometric domain to the semilinear system under some additional conditions and assumptions. It is shown that under these conditions, the stabilization can be realized by applying pole assignment argument to the principal linear part of the system and that the solutions exist globally in discrete-time t without any finite escape time.

  • PDF

A Study on a Reactive Power Control using Digital Filtering (디지털 필터링을 이용한 무효전력 제어에 관한 연구)

  • 우천희;강신준;이덕규;우광방;이성환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.517-524
    • /
    • 1998
  • This paper discusses the development of a reactive power controller using digital signal processing. Digital Signal Processing is the technique of using digital devices to Process continuous signals or data, often in real-time. And DSP algorithms are associated with a discrete time interval between input samples. When one designs a digital filter, one can use a Laplace transform to determine the continuous time frequency response. The corresponding discrete time transform is called Z transform and depends upon discrete samples of the input spaced equally in time. The objectives of this paper are to minimize real power losses and improve the power factor of a given system. Also, the implementation of a direct-form non recursive filter on the TMS320C31 has been described. The application of this microprocessor-based controller using DSP on test system reveals its numerous advantages. Performance and features of the controller for the reactive power control are analyzed.

  • PDF

A Comparative Study on Frequency Estimation Methods

  • Kim, Yoon Sang;Kim, Chul-Hwan;Ban, Woo-Hyeon;Park, Chul-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this paper, a comparative study on the frequency estimation methods using IRDWT (Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and GCDFT(Gain Compensator Discrete Fourier Transform) is presented. The 345[kV] power system modeling data of the Republic of Korea by EMTP-RV is used to evaluate the performance of the proposed two kinds of RDWT(IRDWT and FRDWT) and GCDFT. The simulation results show that the frequency estimation technique based on FRDWT could be the optimal frequency measurement method, and thus can be applied to FDR(Fault Disturbance Recorder) for wide-area blackout protection or frequency measurement apparatus.

Design of Improved Discrete Variable Controller for Induction motor Position control

  • Jeon, Hee-Jong;Jeong, Eull-Gi;Kim, Beung-Jin;Kim, Sang-Woo;Lim, Byung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.404-409
    • /
    • 1998
  • In this paper, the discrete variable structure controller (DVSC) is proposed for vector controlled induction motor position control. The variable structure control (VSC) which guarantees accuracy and robustness in nonlinear control system is developed in discrete time domain for applying to real servo system. Furthermore, the load torque observer is introduced to reduce chattering problem. The computer simulation results are presented to verify the proposed control scheme.

  • PDF

Time Delay Control of Noncolocated Flexible System in z-Domain (비병치 유연계의 시간지연 이산제어)

  • 강민식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1089-1098
    • /
    • 1992
  • This paper concerns a discrete time control of noncolocated flexible mechanical systems by using time delay relation. A stability criterion of closed-loop system is derived in discrete time domain and a graphic method is developed for designing controllers. Based on this method, a derivative controller is designed for a simply supported uniform beam in the cases of colocation without time delay and of noncolocation with time delay. Some simulation results show the effectiveness of the suggested control.

Stability Bound for Time-Varying Uncertainty of Positive Time-Varying Discrete Systems with Time-Varying Delay Time (시변 지연시간을 갖는 양의 시변 이산시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.424-428
    • /
    • 2016
  • A simple new sufficient condition for asymptotic stability of the positive linear time-varying discrete-time systems, with unstructured time-varying uncertainty in delayed states, is established in this paper Compared with previous results that cannot be applied to time-varying systems; the time-varying system and delay time are considered simultaneously in this paper. The proposed conditions are compared with suitable conditions for the typical discrete-time systems. The considerations are illustrated by numerical examples of previous work.

Simultaneous identification of stiffness and damping based on derivatives of eigen-parameters

  • Lia, H.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.687-702
    • /
    • 2015
  • A method based on derivatives of eigen-parameters is presented for damage detection in discrete systems with dampers. The damage is simulated by decrease on the stiffness coefficient and increase of the damping coefficient. In the forward analysis, the derivatives of eigen-parameters are derived for the discrete system. In the inverse analysis, a derivative of eigen-parameters based model updating approach is used to identify damages in frequency domain. Two numerical examples are investigated to illustrate efficiency and accuracy of the proposed method. Studies in this paper indicate that the proposed method is efficient and robust for both single and multiple damages and is insensitive to measurement noise. And satisfactory identified results can be obtained from few numbers of iterations.

The Robustness Improvement of Discrete-Time Direct Adaptive Controllers (이산치 직접 적응제어기의 견실성 향상)

  • 천희영;박귀태;박승규;권성하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.291-300
    • /
    • 1990
  • This paper presents a robust discrete-time direct adaptive pole-placement with new discrete parameter adaptation algorithm (PAA), the standard RLS is suitably modified by adding a term which is exponentially proportional to the filtered tracking error and using a signal normalization. It is shown that it makes the overall adaptive system more robust in the presence of disturbances or unmodeled dynamics. In order to discuss the robustness improvement by using the input-output stability theory, the overall adaptive control system is reformulated and the sector theory is applied. In addition, computer simulation results are presented to complement the theoretical development.

  • PDF

Control of Discrete-Time Chaotic Systems Using Model-Based Control (모델 기준 제어를 이용한 이산치 혼돈 시스템의 제어)

  • Park, Kwang-Sung;Joo, Jin-Man;Park, Jin-Bae;Choi, Yoon-Ho;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1056-1059
    • /
    • 1996
  • In this study, a new OSA controller is proposed for controlling discrete-time chaotic systems efficiently. A new OSA controller uses NARMAX models, and its feedback gain is designed on the basis of conventional linear control theory. In order to evaluate the performance of a new OSA controller, a new OSA controller is applied to Henon system which is a discrete-time chaotic system, and then the control performance of a new OSA controller are compared with that of the previous model-base controller through computer simulations.

  • PDF

Patient Flow Optimization for Outpatient Department Using Discrete-Event Simulation

  • Dieu, Xuan-Manh;Hoang, Huu-Trung;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.804-814
    • /
    • 2019
  • The patient's waiting time and length of stay have been reported as a factor decreasing their satisfaction in the hospital, especially in developing countries. This paper focuses on modeling hospital's outpatient department workflow in a developing country and optimizing the patient waiting time as well as total length of stay. By using discrete-event simulation, many alternative scenarios have raised, such as adding more working time, altering human resources, and adjusting the staff's responsibility, those scenarios will be examined to explore better settings for the hospital. The results show that possible to achieve a 9.6% reduction in patient total length of stay and it could be accomplished without adding more resources to the hospital.