• 제목/요약/키워드: discrete system

Search Result 2,479, Processing Time 0.025 seconds

Spectrum Analysis and Performance Evaluation of OFDM-Single-Side Band Systems Based on BPSK Modulation (BPSK 변조 기반의 OFDM-Single Side Band 시스템의 스펙트럼 분석 및 성능 평가)

  • Kim, Byeongjae;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1380-1386
    • /
    • 2016
  • In this paper, we propose and evaluate OFDM(Orthogonal Frequency Division Multiplexing)-SSB(Singe Side Band) for improving spectral efficiency. The proposed system is based on OFDM system using DCT(Discrete Cosine Transform) and DHT(Discrete Hilbert Transform) for SSB modulation, this proposed system transmit a BPSK modulation signal through a single sideband and BPSK modulation signal through the other single sideband. In other words, we design and evaluate the proposed system which transmit two BPSK signal through each other single sideband. Also each BPSK BER performance is similar with theoretical BPSK BER performance. the proposed system transmits BPSK signal using half of spectrum of conventional OFDM system or transmit two BPSK signal in same time.

Stability Condition for Discrete Interval System with Time-Varying Delay Time (시변 지연시간을 갖는 이산 구간 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.574-580
    • /
    • 2015
  • The stability condition of linear discrete interval systems with a time-varying delay time is considered. The considered system has interval system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. Compared to previous results, the stability issue on the interval systems is expanded to time-varying delay. Furthermore, the new condition can imply the existing results on the time-invariant case and show the relation between interval time-varying delay time and stability of the system. The proposed condition can be applied to find the stability bound of the discrete interval system. Some numerical examples are given to show the effectiveness of the new condition and comparisons with the previously reported results are also presented.

Queue Length Analysis of Discrete-time Queueing System under Workload Control and Single Vacation (일량제어정책과 단수휴가를 갖는 이산시간 대기행렬의 고객수 분석)

  • Lee, Se Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • In this paper, we consider a dyadic server control policy that combines workload control and single vacation. Customer arrives at the system with Bernoulli process, waits until his or her turn, and then receives service on FCFS(First come first served) discipline. If there is no customer to serve in the system, the idle single server spends a vacation of discrete random variable V. If the total service times of the waiting customers at the end of vacation exceeds predetermined workload threshold D, the server starts service immediately, and if the total workload of the system at the end of the vacation is less than or equal to D, the server stands by until the workload exceeds threshold and becomes busy. For the discrete-time Geo/G/1 queueing system operated under this dyadic server control policy, an idle period is analyzed and the steady-state queue length distribution is derived in a form of generating function.

DEVS/CS ( Discrete Event Specification System/continuous System) Combined Modeling of Cardiovascular Continuous System Model (심혈관 연속 시스템 모델의 DEVS/CS혼합 모델링)

  • 전계록
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 1995
  • Combined models, specified by two or more modeling formalisms, can represent a wide variety of complex systems. This paper describes a methodology for the development of combined models in two model types of discrete event and continuous process. The methodology is based on transformation of continuous state space into discrete one to homomorphically represent dynamics of continuous processes in discrete events. This paper proposes a formal structure which can combine model of the DES and the CS within a framework. The structure employs the DEVS formalism for the DES models and differential or polynomial equations for the CS models. To employ the proposed structure to specify a DEVS/CS combined model, a modeler needs to take the following steps. First, a modeler should identify events in the CS and transform the states of the CS into the DES. Second, a modular employs the formalism to specify the system as the DES. Finally, a moduler developes sub-models for the CS and continguos states of the DES and establishs one-to-one correspondence between the sub-models and such states. The proposed formal structre has been applied to develop a DEVS/CS combined model for the human cardiovascular system. For this, the cardiac cycle is partitioned into a set of phases based on events identified through observation. For each phase, a CS model has been developed and associated with the phase. To validate the DEVS/CS combined model developed, then simulate the model in the DEVSIM + + environment, which is a model simulation results with the results obtained from the CS model simulation using SPICE. The comparison shows that the DEVS/CS combined model adequately represents dynamics of the human heart system at each phase of cardiac cycle.

  • PDF

Modeling and Simulation of the Cardiovascular System using DEVS formalism (DEVS 형식론을 적용한 심혈관 시스템의 모델링 및 시뮬레이션)

  • Cho, Y.J.;Son, K.S.;Nam, K.G.;Lee, Y.W.;Kim, K.N.;Choi, B.C.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.74-79
    • /
    • 1996
  • This paper describes a methodology for the development of models of discrete event system(DES). The methodology is based on transformation of continuous state space into discrete one to homomorphically represent dynamics of continuous processes in discrete events. This paper proposes a formal structure which can couple DES models within a framework. The structure employs the DEVS formalism for the DES models. The proposed formal structure has been applied to develop a DEVS model for the human cardiovascular system. For this, the cardiac cycle is partitioned into a set of phases based on events identified through VisSim simulation in the CS of the electrical analog model. VisSim is the simulation tool of visual environment for developing continuous, discrete, and hybrid system models and performing dynamic simulation. For each phase, a CS of the electrical analog model for the cardiovascular system has been simulated by VisSim 2.0. To validate this model, first develop the DEVS model, then simulate the model in the DEVSIM++ environment. It has same simulation results for the data obtained from the CS simulation using VisSim. The comparison shows that the DEVS model represents dynamics of the human heart system at each phase of cardiac cycle.

  • PDF

The System Shape and Size Discrete Optimum Design of Space Trusses using Genetic Algorithms (Genetic Algorithms에 의한 입체트러스의 시스템 형상 및 단면 이산화 최적설계)

  • Park, Choon Wook;Kim, Myung Sun;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.577-586
    • /
    • 2001
  • The objective of this study is the development of sizing and system shape discrete optime design algorithm which is based on the genetic algorithms (GAs). The algorithm can perform both size and shape optimum designs of space trusses. The developed algorithm was implemented in a computer program. The algorithm is known to be very efficient for the discrete optimization The genetic process selects the next design points based on the survivability of the current design points The evolutionary process evaluates the survivability of the design points selected from the genetic process in the genetic process of the simple genetic algorithms there are three basic operators : reproduction cross-over and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

The Development of a MATLAB-based Discrete Event Simulation Framework for the Engagement Simulations of the Weapon Systems (무기체계 교전 시뮬레이션을 위한 매트랩 기반 이산사건시뮬레이션 프레임워크의 개발)

  • Hwang, Kun-Chul;Lee, Min-Gyu;Kim, Jung-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.31-39
    • /
    • 2012
  • Simulation Framework is a basic software tool used to develop simulation applications. This paper describes the development of a discrete event simulation framework based on DEVS(Discrete EVent System Specification) formalism, using MATLAB language which is widely used in technical computing and engineering disciplines. The newly developed framework utilizing MATLAB object oriented programming combines the convenience of MATLAB language and the sophisticated architecture of the DEVS formalism. Hence, it supports the productivity, flexibility, extensibility that are required for the simulation application software development of the weapon systems engagement. Moreover, it promises a simulation application the increased the computation speed proportional to the number of CPU of a multi-core processor, providing the batch simulation functionality based on MATLAB parallel computing technology.