• Title/Summary/Keyword: discrete system

Search Result 2,479, Processing Time 0.028 seconds

Combined discrete event and discrete time simulation framework for the improvement of shipbuilding process planning (조선 공정 계획의 수립 완성도 향상을 위한 이산 사건 및 이산 시간 혼합형 시뮬레이션 프레임워크)

  • Cha, Ju-Hwan;Roh, Myung-Il;Bang, Kyung-Woon;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.71-80
    • /
    • 2008
  • In this study, a simulation framework, which can support developing various simulation systems for the improvement of process planning in shipbuilding such as the block erection, the block turn-over, and so on, is proposed. In addition, a simulation kernel, which is a key component of the simulation framework, is implemented according to the concept of the combined discrete event and discrete time simulation. To evaluate the efficiency and applicability of the proposed simulation framework, it is applied to the block erection process in shipbuilding. The result shows that the proposed simulation framework can provide the consistent, integrated development environment for a simulation system, as compared with existing studies and commercial simulation systems.

  • PDF

Comparative Studies of Frequency Estimation Method for Fault Disturbance Recorder (고장 왜란 기록기를 위한 주파수 추정 기법의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • Voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in a power system. The PMU technique can not easily get the field data and it is impossible to share information, so that there has been used a FNET(Frequency Monitoring Network) method for the wide-area intelligent protection in USA. It consists of FDR(Fault Disturbance Recorder) and IMS(Information Management System). Therefore, FDR must provide an optimal frequency estimation method that is robust to noise and failure. In this paper, we present comparative studies for the frequency estimation method using IRDWT(Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and DFT(Discrete Fourier Transform). The Republic of Korea345[kV] power system modeling data by EMTP-RV are used to evaluate the performance of the proposed two kinds of RDWT(Recursive Discrete Wavelet Transform) and DFT. The simulation results show that the proposed frequency estimation technique using FRDWT could be the optimal frequency measurement method, and thus be applied to FDR.

Optimal Periodic Replacement Policy Under Discrete Time Frame (이산 시간을 고려한 시스템의 교체와 수리 비용 최적화 연구)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • Systems such as database and socal network systems have been broadly used, and their unexpected failure, with great losses and sometimes a social confusion, has received attention in recent years. Therefore, it is an important issue to find optimal maintenance plans for such kind of systems from the points of system reliability and maintaining cost. However, it is difficult to maintain a system during its working cycle, since stopping works might incur users some troubles. From the above viewpoint, this paper discusses minimal repair maintenance policy with periodic replacement, while considering the random working cycles. The random working cycle and periodic replacement policies with minimal repair has been discussed in traditional literatures by usually analyzing cases for the nonstopping works. However, maintenance can be more conveniently done at discrete time and even during the working cycle in real applications. So, we propose that periodic replacement is planned at discrete times while considering the random working cycle, and moreover provide a model in which system, with a minimal repair at failures between replacements, is replaced at the minimum of discrete times KT and random cycles Y. The average cost rate model is used to determine the optimal number of periodic replacement.

Ramp Metering under Exogenous Disturbance using Discrete-Time Sliding Mode Control (이산 슬라이딩모드 제어를 이용한 램프 미터링 제어)

  • Jin, Xin;Chwa, Dongkyoung;Hong, Young-Dae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2046-2052
    • /
    • 2016
  • Ramp metering is one of the most efficient and widely used control methods for an intelligent transportation management system on a freeway. Its objective is to control and upgrade freeway traffic by regulating the number of vehicles entering the freeway entrance ramp, in such a way that not only the alleviation of the congestion but also the smoothing of the traffic flow around the desired density level can be achieved for the maintenance of the maximum mainline throughput. When the cycle of the signal detection is larger than that of the system process, the density tracking problem needs to be considered in the form of the discrete-time system. Therefore, a discrete-time sliding mode control method is proposed for the ramp metering problem in the presence of both input constraint in the on-ramp and exogenous disturbance in the off-ramp considering the random behavior of the driver. Simulations were performed using a validated second-order macroscopic traffic flow model in Matlab environment and the simulation results indicate that proposed control method can achieve better performance than previously well-known ALINEA strategy in the sense that mainstream flow throughput is maximized and congestion is alleviated even in the presence of input constraint and exogenous disturbance.

Model-free $H_{\infty}$ Control of Linear Discrete-time Systems using Q-learning and LMI Based on I/O Data (입출력 데이터 기반 Q-학습과 LMI를 이용한 선형 이산 시간 시스템의 모델-프리 $H_{\infty}$ 제어기 설계)

  • Kim, Jin-Hoon;Lewis, F.L.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1411-1417
    • /
    • 2009
  • In this paper, we consider the design of $H_{\infty}$ control of linear discrete-time systems having no mathematical model. The basic approach is to use Q-learning which is a reinforcement learning method based on actor-critic structure. The model-free control design is to use not the mathematical model of the system but the informations on states and inputs. As a result, the derived iterative algorithm is expressed as linear matrix inequalities(LMI) of measured data from system states and inputs. It is shown that, for a sufficiently rich enough disturbance, this algorithm converges to the standard $H_{\infty}$ control solution obtained using the exact system model. A simple numerical example is given to show the usefulness of our result on practical application.

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

Performance Analysis of a Finite-Buffer Discrete-Time Queueing System with Fixed-Sized Bulk-service

  • Chang, Seok-Ho;Kim, Tae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.783-792
    • /
    • 2003
  • We consider a finite-buffer discrete-time queueing system with fixed-size bulk-service discipline: Geo/ $G^{B}$1/K+B. The main purpose of this paper is to present a performance analysis of this system that has a wide range of applications in Asynchronous Transfer Mode (ATM) and other related telecommunication systems. For this purpose, we first derive the departure-epoch probabilities based on the embedded Markov chain method. Next, based on simple rate in and rate out argument, we present stable relationships for the steady-state probabilities of the queue length at different epochs: departure, random, and arrival. Finally, based on these relationships, we present various useful performance measures of interest such as the moments of number of packets in the system at three different epochs and the loss probability. The numerical results are presented for a deterministic service-time distribution - a case that has gained importance in recent years.s.

Noble Discrete Sliding Mode Control for Discrete Nonlinear System (비선형 계통에 대한 새로운 이산치 슬라이딩 모드제어)

  • Park, Seung-Kyu;Lee, Jae-Dong;Kwak, Gun-Pyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.912-914
    • /
    • 1999
  • In this paper, the feedback linearization technique is used with the sliding mode control for discrete nonlinear systems. This combination of the two control techniques is achieved by Proposing a novel sliding surface which has the nominal dynamics of the original system controlled by feedback linearization technique. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching Phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

Design of Reconfigurable Flight Controller Using Discrete Model Reference Adaptive Scheme

  • Hyung, Seung-Yong;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • In this paper, an adaptive control algorithm using system identification is proposed for an aircraft fault tolerant control system. A discrete state-space system is reformulated to be the ARX model which has the advantage in handing variable structure systems. Discrete model reference adaptive control is used to make the output of fault system follow the output of reference model. To validate the performance of the proposed control scheme, numerical simulations are performed for the high performance aircraft with control surface damage.

A New Consideration for Discrete-System Reduction via Impulse Response Gramian

  • Younseok Choo;Park, Jaeho
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.384-389
    • /
    • 2004
  • Recently a method of model reduction for discrete systems has been proposed in the literature based on a new impulse response Gramian. In this method, the system matrix$A_r$ of a reduced model is computed by approximating the reduced-order impulse response Gramian. The remaining matrices $b_r$ and $c_r$ are obtained so that various initial Markov parameters and time-moments of the original system are preserved in the reduced model. In this paper a different approach is presented based on the recursive relationship among the impulse response Gramians.