• Title/Summary/Keyword: discrete models

Search Result 632, Processing Time 0.022 seconds

Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.66-72
    • /
    • 2000
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. Both the direct differentiation code and the adjoint variable code adopt the same time integration scheme with the flow solver to efficiently solve the differentiated equations. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. Using two-equation turbulence models, it is observed that a usual assumption of constant turbulent eddy viscosity in adjoint methods may lead to seriously inaccurate results in highly turbulent flows.

  • PDF

Model Coupling Technique for Level Access in Hierarchical Simulation Models and Its Applications (계층의 구조를 갖는 시뮬레이션 모델에 있어서 단계적 접근을 위한 모델연결 방법론과 그 적용 예)

  • 조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.2
    • /
    • pp.25-40
    • /
    • 1996
  • Modeling of systems for intensive knowledge-based processing requires a modeling methodology that makes efficient access to the information in huge data base models. The proposed level access mothodology is a modeling approach applicable to systems where data is stored in a hierarchical and modular modules of active memory cells(processor/memory pairs). It significantly reduces the effort required to create discrete event simulation models constructed in hierarchical, modular fashion for above application. Level access mothodology achieves parallel access to models within the modular, hierarchical modules(clusters) by broadcasting the desired operations(e.g. querying information, storing data and so on) to all the cells below a certain desired hierarchical level. Level access methodology exploits the capabilities of object-oriented programming to provide a flexible communication paradigm that combines port-to-port coupling with name-directed massaging. Several examples are given to illustrate the utility of the methodology.

  • PDF

A Study on the Stochastic User Equilibrium Assignment (확솔적 이용자 평형통행 배분에 관한 연구)

  • 이승재;전경수;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.1
    • /
    • pp.55-71
    • /
    • 1990
  • The behavioral mechanism underlying the traffic assignment model is a choice, or decision-making process of traveling paths between origins and destinations. The deterministic approach to traffic assignment assumes that travelers choose shortest path from their origin-destination pair. Although this assumption seems reasonable, it presumes that all travelers have perfect information regarding travel time, that they make consistently correct decision, and that they all behave in identical fashion. Stochastic user equilibrium assignment relaxes these presumptions by including a random component in traveler's perception of travel time. The objective of this study is to compare "A Model of Deterministic User Equilibrium Assignment" with "Models of Stochastic User Equilibrium Assignment" in the theoretical and practical aspects. Specifically, SUE models are developed to logit and probit based models according to discrete choice functions. The models were applied to sioux Falls net ork consisting of 24 zones, 24 nodes and 76 links. The distribution of perceived travel time was obtained by using the relationship between speed and traffic flow.

  • PDF

DEVS-HLA: Distributed Heterogeneous Simulation Framework (DEVS-HLA: 이 기종 분산 시뮬레이션 틀)

  • 김용재;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.9-24
    • /
    • 1999
  • We describe a heterogeneous simulation framework, so called DEVS-HLA, in which conventional simulation models and the DEVS (Discrete Event System Specification) models are interoperable. DEVS-HLA conceptually consists of three layers: model layer, DEVS BUS layer, and HLA (High Level Architecture) layer. The model layer has a collection of heterogeneous simulation models, such as DEVS, CSIM, SLAM, and so on, to represent various aspects of a complex system. The DEVS BUS layer provides a virtual software bus, DEVS BUS, so that such simulation models can communicate with each other. Finally, the HLA layer is employed as a communication infrastructure, which supports several good features for distributed simulation. The DEVS BUS has been implemented on the HLA/RTI (Run-Time Infrastructure) and a simple example of a flexible manufacturing system has been developed to validate the DEVS-HLA.

  • PDF

A New Small Signal Modeling of Average Current Mode Control

  • Jung, Young-Seok;Kang, Jeong-Il;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.609-614
    • /
    • 1998
  • A new small signal modeling of an average current mode control is proposed. In order to analyze the characteristics of the control scheme, the discrete and continuous time small signal models are derived. The derivation are mainly come from the analysis of the sampling effect presented in the current control loop. By the mathematical interpretation of practical sampler representing the sampling effect of a current control loop, the small signal models of an average current mode control can be easily derived. The instability of the current control loop, which gives rise to the subharmonic oscillation, can be identified by the proposed models. To show the usefulness of the proposed models, the simulation and experiment are carried out. The results show that the predicted results by the proposed model are much better agreed with the measured ones than that of the conventional model, even though the high gain of the compensation network of a current control loop is employed.

  • PDF

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

An Optimal Fixed-lag FIR Smoother for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 고정 시간 지연 FIR 평활기)

  • Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • In this paper, we propose an optimal fixed-lag FIR (Finite-Impulse-Response) smoother for a class of discrete time-varying state-space signal models. The proposed fixed-lag FIR smoother is linear with respect to inputs and outputs on the recent finite horizon and estimates the delayed state so that the variance of the estimation error is minimized with the unbiased constraint. Since the proposed smoother is derived with system inputs, it can be adapted to feedback control system. Additionally, the proposed smoother can give more general solution than the optimal FIR filter, because it reduced to the optimal FIR filter by setting the fixed-lag size as zero. A numerical example is presented to illustrate the performance of the proposed smoother by comparing with an optimal FIR filter and a conventional fixed-lag Kalman smoother.

Design of A Speech Recognition System using Hidden Markov Models (은닉 마코프 모델을 이용한 음성 인식 시스템 설계)

  • Lee, Chul-Won;Lim, In-Chil
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.108-115
    • /
    • 1996
  • This paper proposes an algorithm and a model topology for the connected speech recognition using Discrete Hidden Markov Models. A proposed model uses diphone and triphone model which consider the recognition rate and recognisable vocabulary. Considering more exact inter- phoneme segmentation and execution speed of algorithm, 4 states have to exist in diphone model where the first state and the last state are keeping a steady state, the other states hold a transient state. 7 states have to exist in triphone model where 7 states are specified and improved to 3 steady states and 4 transition states. Also, the proposed speech recognition algorithm is designed to detect the inter-phoneme segmentation during the recognition processing.

  • PDF

Study on Vaporization and Combustion of Spray in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

SAMPLING ERROR ANALYSIS FOR SOIL MOISTURE ESTIMATION

  • Kim, Gwang-Seob;Yoo, Chul-sang
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.209-222
    • /
    • 2000
  • A spectral formalism was applied to quantify the sampling errors due to spatial and/or temporal gaps in soil moisture measurements. The lack of temporal measurements of the two-dimensional soil moisture field makes it difficult to compute the spectra directly from observed records. Therefore, the space-time soil moisture spectra derived by stochastic models of rainfall and soil moisture was used in their record. Parameters for both models were tuned with Southern Great Plains Hydrology Experiment(SGP'97) data and the Oklahoma Mesonet data. The structure of soil moisture data is discrete in space and time. A design filter was developed to compute the sampling errors for discrete measurements in space and time. This filter has the advantage in its general form applicable for all kinds of sampling designs. Sampling errors of the soil moisture estimation during the SGP'97 Hydrology Experiment period were estimated. The sampling errors for various sampling designs such as satedlite over pass and point measurement ground probe were estimated under the climate condition between June and August 1997 and soil properties of the SGP'97 experimental area. The ground truth design was evaluated to 25km and 50km spatial gap and the temporal gap from zero to 5 days.

  • PDF