• 제목/요약/키워드: discrete/continuous variables

검색결과 128건 처리시간 0.027초

Real-coded Micro-Genetic Algorithm for Nonlinear Constrained Engineering Designs

  • Kim Yunyoung;Kim Byeong-Il;Shin Sung-Chul
    • Journal of Ship and Ocean Technology
    • /
    • 제9권4호
    • /
    • pp.35-46
    • /
    • 2005
  • The performance of optimisation methods, based on penalty functions, is highly problem- dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm (R$\mu$GA) is proposed to find the global optimum of continuous and/or discrete nonlinear constrained engineering problems without handling any of penalty functions. R$\mu$GA can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. The proposed R$\mu$GA approach has been demonstrated by solving three different engineering design problems. From the simulation results, it has been concluded that R$\mu$GA is an effective global optimisation tool for solving continuous and/or discrete nonlinear constrained real­world optimisation problems.

복합재 로터 블레이드 단면 이산최적설계 (Discrete Optimal Design of Composite Rotor Blade Cross-Section)

  • 원유진;이수용
    • 한국항공운항학회지
    • /
    • 제21권2호
    • /
    • pp.7-14
    • /
    • 2013
  • In this paper, the optimal design of composite rotor blade cross-section is performed using a genetic algorithm. Skin thickness, torsion box thickness and skin lay-up angle are adopted as discrete design variables. The position and width of a torsion box are considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and constraints are failure index, center mass, natural frequency and blade minimum mass per unit length. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box are determined by using an in-house program developed for the optimal design of rotor blade cross-section.

이산설계변수를 고려한 복합재 로터블레이드 단면 최적설계 (Optimal Design of Composite Rotor Blade Cross-Section using Discrete Design variable)

  • 원유진;이수용
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, optimal design of composite rotor blade cross-section to consider manufacturability was performed. Skin thickness, torsion box thickness and skin lay-up angle were adopted as discrete design variables and The position and width of a torsion box were considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and various constraints such as failure index, center mass, shear center, natural frequency and blade minimum mass per unit length were adopted. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box were determined by using an in-house program developed for the optimal design of rotor blade cross-section.

VUS and HUM Represented with Mann-Whitney Statistic

  • Hong, Chong Sun;Cho, Min Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.223-232
    • /
    • 2015
  • The area under the ROC curve (AUC), the volume under the ROC surface (VUS) and the hypervolume under the ROC manifold (HUM) are defined and interpreted with probability that measures the discriminant power of classification models. AUC, VUS and HUM are expressed with the summation and integration notations for discrete and continuous random variables, respectively. AUC for discrete two random samples is represented as the nonparametric Mann-Whitney statistic. In this work, we define conditional Mann-Whitney statistics to compare more than two discrete random samples as well as propose that VUS and HUM are represented as functions of the conditional Mann-Whitney statistics. Three and four discrete random samples with some tie values are generated. Values of VUS and HUM are obtained using the proposed statistic. The values of VUS and HUM are identical with those obtained by definition; therefore, both VUS and HUM could be represented with conditional Mann-Whitney statistics proposed in this paper.

Robust Reliable H$\infty$ a Control of Continuous/Discrete Uncertain Time Delay Systems using LMI

  • Kim, Jong-Hae;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.121-127
    • /
    • 1999
  • In this paper, we present robust reliable H$\infty$ controller design methods of continuous and discrete uncertain time delay systems using LMI (linear matrix inequality) technique, respectively. Also the existence conditions of state feedback control are proposed . Using some changes of variables and Schur complements, the obtained sufficient conditions are transformed into an LMI form. The closed loop system by the obtained controller is quadratically stable with H$\infty$ norm bound for all admissible uncertainties, time delay, and all actuator failures occurred within the prespecified set. We show the validity of the proposed method through numerical example.

  • PDF

First-Passage Time Distribution of Discrete Time Stochastic Process with 0-state

  • Park, Young-Sool
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권2호
    • /
    • pp.119-125
    • /
    • 1997
  • We handle the stochastic processes of independent and identically distributed random variables. But random variables are usually dependent among themselves in actual life. So in this paper, we find out a new process not satisfying Markov property. We investigate the probability mass functions and study on the probability of the first-passage time. Also we find out the average frequency of continuous successes in from 0 to n time.

  • PDF

A Study on Data Mining Using the Spline Basis

  • Lee, Sun-Geune;Sim, Songyong;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제11권2호
    • /
    • pp.255-264
    • /
    • 2004
  • Due to a computerized data processing, there are many cases when we encounter a huge data set. On the other hand, advances in computing technologies make it possible to deal with a huge data set. One important area is the data mining. In this paper we consider data mining when the dependent variable is binary. The proposed method is to use the poly-class model when the independent variables consists of continuous and discrete variables. An example is provided.

섬유 배열각의 이산성과 물성치의 불확실성을 고려한 복합재료 적층 평판의 최적 설계 (Optimal Design of Composite Laminated Plates with the Discreteness in Ply Angles and Uncertainty in Material Properties Considered)

  • 김태욱;신효철
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.369-380
    • /
    • 2001
  • Although extensive efforts have been devoted to the optimal design of composite laminated plates in recent years, some practical issues still need further research. Two of them are: the handling of the ply angle as either continuous or discrete; and that of the uncertainties in material properties, which were treated as continuous and ignored respectively in most researches in the past. In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles and that for thickness optimization which considers uncertainties in material properties are used for a two step optimization of composite laminated plates. In the stacking sequence optimization, the branch and bound method is modified to handle discrete variables; and in the thickness optimization, the convex modeling is used in calculating the failure criterion, given as constraint, to consider the uncertain material properties. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region taken into consideration; and the optimal thickness increases when the uncertainties of elastic moduli considered, which shows such uncertainties should not be ignored for safe and reliable designs.

직교배열표를 이용한 이산공간에서의 최적화 알고리듬 개발 (Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Design Space)

  • 이정욱;박준성;이권희;박경진
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1621-1626
    • /
    • 2001
  • The structural optimization have been carried out in the continuous design space or in the discrete design space. Methods fur discrete variables such as genetic algorithms , are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete des inn space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions leer constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

A continuous solution of the heat equation based on a fuzzy system

  • Moon, Byung-Soo;Hwang, In-Koo;Kwon, Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.13-17
    • /
    • 2003
  • A continuous solution of the Dirichlet boundary value problem for the heat equation $u_t$$a2u_{xx}$ using a fuzzy system is described. We first apply the Crank-Nicolson method to obtain a discrete solution at the grid points for the heat equation. Then we find a continuous function to represent approximately the discrete values at the grid points in the form of a bicubic spline function (equation omitted) that can in turn be represented exactly by a fuzzy system. We show that the computed values at non-grid points using the bicubic spline function is much smaller than the ones obtained by linear interpolations of the values at the grid points. We also show that the fuzzy rule table in the fuzzy system representation of the bicubic spline function can be viewed as a gray scale image. Hence, the fuzzy rules provide a visual representation of the functions of two variables where the contours of different levels for the function are shown in different gray scale levels