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Abstract

The performance of optimisation methods, based on penalty functions, is highly problem-
dependent and many methods require additional tuning of some variables. This additional
tuning is the influences of penalty coefficient, which depend strongly on the degree of
constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain
difficulties when dealing with continuous and/or discrete search spaces with large
dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm (RpuGA) is
proposed to find the global optimum of continuous and/or discrete nonlinear constrained
engineering problems without handling any of penalty functions. RuUGA can help in
avoiding the premature convergence and search for global solution-spaces, because of its
wide spread applicability, global perspective and inherent parallelism. The proposed
RuGA approach has been demonstrated by solving three different engineering design
problems. From the simulation results, it has been concluded that RuGA is an effective
global optimisation tool for solving continuous and/or discrete nonlinear constrained real-
world optimisation problems.
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1 Introduction

In the traditional optimisation methods, cach of them is specialised in solving a particular
type of problem. When faced with a different type of problem, the same method may not
work as well. In general, it has known that an effective way to solve the nonlinear
constrained optimisation problems is to transform it into a sequence of unconstrained
minimisation. Several methods, which are based on penalty functions, have been proposed
for handling nonlinear/linear constraints by genetic algorithm for numerical optimisation
problems. The performance of these methods is highly problem-dependent and many
methods require additional tuning of some variables. This additional tuning is the
influences of penalty coefficient, which depend strongly on the degree of constraint
violation(Koziel and Michalewicz, 1999). Binary-coded Genetic Algorithm (BGA) meets
certain difficulties when dealing with continuous and/or discrete search spaces with large
dimensions(Herrera et al, 1998).

With the above reasons, Real-coded Micro-Genetic Algorithm (RuGA) is proposed to
find the global optimum of continuous and/or discrete nonlinear constrained engineering
problems without handling any of penalty functions. Micro-Genetic Algorithm (uGA)
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explores in a small population with some genetic operators to find the global optimum
solution-spaces(Kim et al, 2004; Kim et al, 2005). The proposed approach has the
robustness of parallel exploration and asymptotic convergence with real value parameters.
Therefore, RWGA can help in avoiding the premature convergence and search for better
global solution, because of its wide spread applicability, global perspective and inherent
parallelism. The proposed RuGA approach has been demonstrated by solving three
different engineering design problems.

From the simulation results, it is shown that RuGA implementation overcomes the poor
convergence properties and finds the global optimum solution than results obtained from
other optimisation methods. Therefore, it has been concluded that the proposed RuGA is
an effective optimisation tool for solving continuous and/or discrete nonlinear real-world
optimisation problems.

2 Real-coded micro-genetic algorithm (RuGA)

Most real-world problems may not be handled using binary representations and an operator
set consisting only of binary crossover and binary mutation in Genetic Algorithm (Davis,
1989). The reason is that nearly every real-world domain has associated domain
knowledge that is of use when one is considering a transformation of a solution in the
domain. Davis(1989) believes that the real-world knowledge should be incorporated into
the GA, by adding it to the decoding process or expanding the operator set. Real coding
allows the domain knowledge to be easily integrated into Real-coded Genetic Algorithm
(RGA) for the case of problems with non-trivial restrictions.

RGA is one of the optimisation methods with multi-point approaches. A solution is
directly represented as a vector of real-parameter decision variables. Starting with a
population of such solutions (usually randomly created), a set of genetic operators (such as
crossover and mutation) is performed to create a new population in an iterative manner.
Although most RGA differs from each other mainly in terms of their crossover and
mutation operators, they mostly follow one of a few algorithmic models.

RuGA explores in a small population with multiple genetic operators to find the global
optimum solution-spaces. RUGA offers the advantage that the continuous parameters can
gradually adapt to the fitness landscape over the entire search space whereas parameter
values in binary implementations are limited to a certain interval and resolution. RuGA
blurs the distinction among genotype and phenotype, since in many problems the real
number vector already embodies a solution in a natural way. A highlighted advantage of
the RuGA is the capacity for the local tuning of the solutions. For example, Legendre-
Gauss mutation allows the tuning to be produced in a more suitable and faster way than in
the BGA, where the tuning is difficult because of the Hamming cliff effect. Moreover,
RuGA is a steady-state, elite-preserving, and computationally fast algorithm for creating
offspring near parents than anywhere in the search-space. The main skeleton of the
proposed RuGA, based on an idea of Michalewicz(1994), is illustrated in Figure 1.

RuGA finds the global optimum solution by maintaining two types of population as
follows: search population and steering population (Kim et al, 2005). Initial populations,
consisting of five chromosomes, are generated in a random fashion to serve as the starting
feasible solution-spaces. The populations, satisfying the engineering design constraints,
serve as a reservoir of information about the environment and as a basis for generating new
trials. The search population, which satisfies linear constraints of the problem, is a
population for searching the solution-spaces in each generation. A development of the
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search population influences evaluations of individuals in the steering population,
satisfying all constraints.

At each generation step, a feasible search-space is searched by making steering points
from the search points. Some steering points are moved into the population of search
points, where they undergo transformation by specialised operators. That is, the fitter
chromosome is selected to produce offspring, which inherit the best characteristics of the
parents, for the next generation step. RuUGA terminates the optimisation procedure when a
pre-specified number of generations is elapsed. Then, the result is hopefully a population
that is substantially fitter than the original.

In the reproductive plan of RuGA, the main challenge is how to use a pair of decision
variable vectors to create a new pair of offspring vectors or how to perturb a decision
variable vector to a mutated vector in a meaningful manner. That is, the most important
skill is how to make a reproductive plan for better searching technique due to the small
population size. Therefore, multiple genetic operators are adopted for exploration of new
solution-spaces, and will be discussed in the following section 3.

—» Select Operator |4
v
N Igtigzlr E,t(;l;ﬁ:;;;sn Generate & Evaluate Offspring
* Search Population %
¢ Update Search Population
Evaluate Steer Population ¢
¢ Evolve Steer Population
Update Steer & Search Population $
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| Terminal Condition ?
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t)ptimum Resultﬂ

Figure 1: Skeleton of the proposed RUGA

3 Genetic operators

As a result of the modified genetic representation, RuGA requires customisation of the
standard mutation and crossover operators. In general, the distinction between a crossover
and a mutation operator lies mainly in the number of parent solutions used in the
perturbation process. If only one parent solution is used, it should be called a mutation
operator.

Since most crossover operators do not use any fitness information for global optimum,
there is no reason for a crossover operator to steer the search in any particular direction.
The best that a crossover operator can do is to keep the mean of the offspring population
the same as that of the parent population and alter the population variance. The crossover
operator creates each decision variable of offspring vectors from one or more parent
vectors at a time with a probability. A gene with real value is mutated in a dynamic range.

The proposed RuGA consists of 5 types of genetic operators: heuristic crossover,
arithmetic crossover, boundary mutation, metropolis mutation and legendre-gauss mutation
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For the convenience of understanding of the following algorithms, some definitions are
delineated as follows:

Parents . P* =(x’£,---,x{,---,xg), k=12
Offspring : o* =V, v, y,), k=12

n

A : Random number drawn uniformly from the interval [0,1],
T : Unbiased coin flip with a value of zero or one,

P : Parameter for parent solution,

0 : Parameter for offspring solution,

X; : i-th design variable in parent solution,

v, : i-th design variable in offspring solution,

k : Index for selected solution.

3.1 Arithmetic crossover operator

Arithmetic crossover (Michalewicz and Janikow, 1991) generates an offspring O' by
v = Ax, + (1-A)x] from parents P*. The random number A is chosen by carefully
calculating its maximum allowed value in all decision variables so that the resulting
offspring does not exceed the lower or upper limits (domain constraints). This operator
explores points in the search-space which belong to line connecting its parent, P*.

3.2 Heuristic crossover operator

This operator, introduced by Wright(1991), is a unique crossover for the following
reasons: (1) it uses values of the objective function in determining the direction of the
search, (2) it produces only one offspring, and (3) it may produce no offspring at all. The
operator generates a single offspring O' by ! = ﬂ(xf - x})+ x> from parents P*. The parent
P? is not worst than P', ie., f(xf)g f(x}) for minimisation problems and vice-versa for

maximisation problems. It is possible for this operator to generate an offspring vector
which is not feasible.

3.3 Legendre-gaussian mutation operator

This mutation, introduced by the current authors, consists in adding a random value from a
Legendre-Gauss integral distribution to each element of an individual’s vector to create a
new offspring. This operator is based on the Legendre-Gauss integral formula with a
specified number of abscissae over the interval [-1,1]. If a vector x] is selected for this
mutation from the set of movable vectors, the resulting offspring is

W=, - 1wy (04 M

m =

where U, and L, are the newly specified limits (upper and lower, respectively) of the i-th
vector at each generation step. The limits are generated by U, = x} + 4,x} and L, =x/ ~A,x/.
w, 1s the weigh of the designated evaluation point in the sum. We adopted 10 points
Legendre-Gaussian integration. Therefore, m is 10 as the designated evaluation points. 4,
and 4, are random numbers drawn uniformly from the interval [0,1]. This mutation is one
of the operators responsible for the fine tuning capabilities of the system.
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3.4 Metropolis mutation operator

The idea of this operator, suggested by the current authors, is to use Simulated Annealing
(SA) to achieve a fast convergence in search-spaces with feasible solutions. Kirkpatrick et
al(1983) took the idea of the Metropolis algorithm and applied it to combinatorial
optimisation problems. SA is a technique that has attracted significant attention, being
suitable for optimisation problems of large scale, especially ones where a desired global
extremum is hidden among many, poorer, local extrema. That is, SA introduces a more
sophisticated way of moving from the current solution to one of its neighbours, accepting
with a certain probability to move also when the quality of the new solution is worst than
the previous one. Metropolis mutation generates an offspring O' from a parent P' by

C XAy —xh, if =1

= 2
' 1xf+l(xi1—xi1‘), if =0 @

Consider a huge number of particles of fixed volume at some temperature 7. Since the
particles move, the system can be in various states. The probability that the system is in a
state of certain energy E is given by the Boltzmann distribution Prob(£)= exp(— E/«T). The
energy state E is the fluctuation of the objective function value between an offspring and a
parent in the optimisation process. The quantity x (Boltzmann’s constant) is a constant of
nature that relates temperature to energy.

SA sometimes undergoes uphill search as well as downhill search. The simulation in
the Metropolis algorithm calculates the new energy of the system. If the energy has
decreased then an offspring is selected for next generation step. If the energy has increased
then an offspring is accepted using the probability returned by the Boltzmann distribution.

3.5 Boundary mutation operator

The diversity of the population should be kept to be at certain minimal level during
computation. This brings a negative effect of convergence deceleration that could be
oppressive within high problem dimensions. This is why we have introduced boundary
mutate operator (Michalewicz and Janikow, 1991). The aim of this mutation is to grub the
near neighbourhood of better chromosomes and so make searching for more and more
precious solution faster. Therefore, the mutation is very good operator especially when
best chromosomes have to contain vector with values near their boundary values.
Boundary mutation works like uniform mutation, but replaces the value of the chosen
vector with either the upper or lower bound for that vector (chosen randomly).

Let P' be a parent determined for mutation. If the i-th component is the selected vector,
the resulting offspring is O =(v11,-~~,v},~--,vi), where v! is either L, or U, with equal
probability ( Z,and U, denote the new lower and new upper bound, respectively). The
dynamic values ( L,and U,) are easily calculated from the set of constraints.

4 Continuous/discrete nonlinear engineering designs

Three different problems are selected and demonstrated for the superior performance of

RuGA. The proposed RuGA is performed on a personal computer with 3.2GHz Pentium
CPU and 1GB RAM.
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4.1 Helical compression spring design

In a helical compression spring design with the minimum volume, three design variables
are used: the number of coils N (integer variable), the wire diameter d (discrete variable),
and the mean coil diameter D (continuous). The possible wire diameters are 42 non-
equispaced values for ASTM A228 material. The detail discussion of this design model
and its solution was fully described in some of literatures (Kannan and Kramer, 1994, Deb
and Goyal 1997). These three variables are redefined in terms of the design vector X;
X =[x,,x,,%,] =[N,d,D] . The objective function and constraints are:

Minimise F = 0.257°x2x,(x, +2) (3)
P
With g =5 - Bl 5 g, =1~ 1 .05(x, +2)x, 20
X5 K
g3=x2_dmin20 g4:Dmax_(x2+x3)20
gs=D[d-320 26=6,,~5,20
P —
g, :LP_é‘w >0
K

The parameters used above are:

_4xy - x, N 0.615x,

K= P =3001b P =10001b

4(x3 - xz) L X3 :
4
= Gx23 G =11.5Mpsi I =14in

8x, x5

5P=£ ' 6, =125in 6,, =6in

K
S = 0.189 Mpsi D, =3in d_. =02in

The variable N is coded as an integer variable between 1 to 32. The wire diameter d is
coded as a discrete variables. The variable D takes any real value in subsequent iterations.
The solution obtained by RuGA has outperformed than previous optimal solutions
reported as shown in Table 1. This problem was solved earlier using a Genetic Adaptive
Search (GeneAS) method (Deb and Goyal, 1997) and the Branch and Bound (BB) method
(Sandgren 1988). The total number of trial iterations is 3.0x10 in calculation of RuGA.
The calculating times are about 3.1 seconds. Figure 2 shows the evolution process as the
best-so-far fitness of the objective function.

Table 1: Optimal solutions of spring design
N d (in) D (in) F

RuGA 9 0.283 1.223 2.658

GeneAS 9 0.283 1.226  2.665

BB 10 0.283 1.180  2.798
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Figure 2: Evolution process (spring design)

4.2 Welded beam design

A welded structure is shown in Figure 3. A beam 4 is welded to a rigid support member B.
The welded structure is to support a force P of 6,000 Ib. The length L is assumed to be
specified at 14 inch. The objective is to find a feasible combination of design variables so
that the cost function is minimised. The design variables in this design model are: leg
length (h), weld length (w), beam thickness (f) and beam breadth (). For notational
convenience we redefine these four variables in terms of the design vector X:

X:[xl,xz,x3,x4]T :[h,w,t,b]T

The objective function consists of two major cost components: welding labour cost and
material cost. The objective function is

Minimise F =1.10471x7x, +0.04811x,x,(L + x,) 4)

There are several functional relationships between the design variables which delimit
the region of feasibility. These relationships, expressed in the form of inequalities,
represent the design model. The inequality constraints and boundary conditions are

g =7t,-720 g,=0,-020 g3=x,—-x20
g,=P.—P20 g,=025-6>0
0.125<x, <10 0.1<x,,x;,x, <10

The design shear stress (7,) of weld and the design normal stress (o,) for beam
material are adopted to be 13,600 psi and 30,000 psi in this design model, respectively.
The detail discussion of this design model and its solution was fully described in Ragsdell
and Phillips(1976) and Deb(1991). They solved this problem using Geometric
Programming(GP) and Genetic Algorithms(GA) to minimise cost function. The same
parameters used in this design model are adopted for the proposed RuGA to compare the
optimal simulation results. The simulation results are listed in Table 2. In computations of
RuGA, the total number of trial iterations is 3.0x 10*. The CPU running times are about 1.2
seconds. Figure 4 shows the evolution process as the best-so-far fitness of the objective
function.
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Figure 3: Weld beam model Figure 4: Evolution process (Welded beam)

Table 2: Simulation results of a weld beam model

x;(in)  X;(in) x3(in) x4(in) F
RuGA 0.2444 6.2186 82915 0.2444 238113
GP 0.2455 6.1960 8.2730 0.2455 2.385%4
GA 0.2489 6.1730 8.1789  0.2533  2.43312

4.3 Hatchcoverless container ship

The optimum midship section design of container ship belongs to the nonlinear constrained
optimisation problem. In order to compare the effectiveness of the proposed RuGA, two
deterministic search methods were compared on the actual hatchcoverless container ship
(Choi 1993) by optimising the midship section design. These methods are Hooke & Jeeves
Pattern (HJP) search method and Nelder & Mead Simplex (NMS) search method. The
Rules and Regulations of Lloyd's Register of shipping are adopted (LR 2002). The

objective function is the total sectional area of all the longitudinal members for the midship
section.

NP
Minimise F = Tdx (Wd +Ws)+ > (WP, x TP, )+ Z AL, + HbZTSk +(0.5% TCx Hb) (5)
i=1

where,

Td : Thickness of deck plate Wd : Width of deck plate

Ws: Width of sheerstrake WP, : Width of i-th plate (except deck plate)
TP, : Thickness of i-th plate (except deck plate) NP : Number of plates (except deck plate)
NL: Number of longitudinal members AL;:  Sectional area of j-zh longitudinal members
NS ': Number of side girders - TS, : Plate thickness of k-t side girder

Hb : Double bottom height TC: Plate thickness of C.L. girder
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Design variables are the space and geometric beam configurations (thickness and
height) of longitudinal stiffeners, and illustrated in Figure 5. The constraints are mentioned

1
=—1
g1 F,
815 = Zap -1
Zrp

as follows:
g_/' 20 (]:1’2>'515)
where,
X. X.
g4 = S ~=1({=L678), gs,=1-——(i=1479),
min Smax
4 Z1r
g1 =105-X,x18x=2—, g, =1-="%,
X3 ZLA
1 VA
gz=—-1, g =1,
FD ZRB
¢ : Higher tensile steel factor
Sin>Sea - Minimum and maximum spacing of longitudinal members,
respectively
Z,x-Z;,  :Rulerequired and actual deck longitudinal sectional modulus,
respectively
Fy,F, : Local scantling reduction factor for hull members below and above
N.A., respectively
Z,.Z,,  :Actual midship sectional modulus at bottom and deck, respectively
ZRB > ZRD

respectively

: Required minimum midship sectional modulus at bottom and deck,

Table 3: Simulation results between actual ship and optimization methods

Variable Actual ship RuGA NMS HJP
X [mm] 925.0 950.0 975.0 920.0
X; [mm] 26.0 34.0 35.5 335
X3 [mm] 400.0 590.0 635.0 595.0
X4 [mm] 849.0 849.0 849.0 849.0
Xs [mm] 750.0 750.0 750.0 750.0
Xe [mm] 850.0 765.0 780.0 800.0
X5 [mm] 868.0 765.0 765.0 785.0
Xg [mm] 868.0 765.0 775.0 780.0
Total area [cm’] 30,529 29,678 30,028 30,049
Weight [ton/m) 23.965 23.340 23.572 23.604
Ratio [%] 100.0 97.392 98.360 98.494

From the simulation results of Table 3, the midship section design by using RuGA has
a weight efficiency of 2.608% to the design of the actual ship. The probability of obtaining
the global minimum for RuGA is measured by running 10,000 independent trial iterations.
The CPU running times are about 15.2 seconds. Figure 5 shows the optimum midship
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section design of 2000 TEU hatchcoverless container ship. Figure 6 shows the evolution
process as the best-so-far fitness of the objective function

Longitudinal Dimensions

[1-4]
[5-8]
[13-16]
[171
{18-19]
[20~-22]
[23-25]
[26-28]

1350x 150x 10.0/ 11.0
1300x 90 x 11.0/16.0

:300x90 x11,0/16.0
£ 350 x 150 x 10.0/10.5
1 300%x90% 13.0/17.0
2250 x 90 x 12.0/ 16.0
:200x90x9.0/14.0

: 595 x.35.0 F.B.

Shape Dimensions
frame space : 850 mm
web flange space : 3.15m
floor space: 3.15m
double bottom height : 1700.00 mm
bilge radius : 3200.0 mm

Design Variables

X, (deck space) : 950.0 mm

X, (thickness)
X3 (height)

Principal Particular
Lbp : 180.0 m
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[28-29]: 14.0 mm

Figure 5: Optimum midship section design of 2000 TEU hatchcoverless container ship
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Figure 6: Evolution process (container ship)

5 Concluding remarks

A new approach, referred to as Real-coded Micro-Genetic Algorithm (RuGA), to solve
continuous and/or discrete nonlinear optimisation problems is proposed and developed
with the help of multiple genetic operators. RuUGA approach is an abstraction of natural
genetics and theoretical physics and is aimed to search the optimum solution space in
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global optimisation problems. Therefore, RUGA can help in avoiding the premature
convergence and search for better global solution, because of its wide spread applicability,
global perspective and inherent parallelism.

From the simulation results of Tables 1-3 and Figures 2, 4 and 6, it was shown that
RuGA implementation converged to global optimum solution with a marvellous
explorability than the other optimisation methods in three different engineering design
problems. Therefore, Real-coded Micro-Genetic Algorithm can be suggested as an useful
tool for solving continuous and/or discrete nonlinear global optimisation problems.
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