• Title/Summary/Keyword: discontinuous

Search Result 1,399, Processing Time 0.027 seconds

Recognition Performance Improvement of QR and Color Codes Posted on Curved Surfaces (곡면상에 부착된 QR 코드와 칼라 코드의 인식률 개선)

  • Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.267-275
    • /
    • 2019
  • Currently, due to the widespread use of a smartphone, QR codes allow users to access a variety of added services. However, the QR codes posted on curved surfaces tend to be non-uniformly illuminated and bring about the decline of recognition rate. So, in this paper, the block-adaptive binarization policy is adopted to find an optimal threshold appropriate for bimodal image like QR codes. For a large block, its histogram distribution is found to get an initial threshold and then the block is partitioned to reflect the local characteristics of small blocks. Also, morphological operation is applied to their neighboring boundary at the discontinuous at the QR code junction. This paper proposes an authentication method based on the color code, uniquely painted within QR code. Through a variety of practical experiments, it is shown that the proposed algorithm outperforms the conventional method in detecting QR code and also maintains good recognition rate up to 40 degrees on curved surfaces.

Discontinuity in GNSS Coordinate Time Series due to Equipment Replacement

  • Sohn, Dong-Hyo;Choi, Byung-Kyu;Kim, Hyunho;Yoon, Hasu;Park, Sul Gee;Park, Sang-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • The GNSS coordinate time series is used as important data for geophysical analysis such as terrestrial reference frame establishment, crustal deformation, Earth orientation parameter estimation, etc. However, various factors may cause discontinuity in the coordinate time series, which may lead to errors in the interpretation. In this paper, we describe the discontinuity in the coordinate time series due to the equipment replacement for domestic GNSS stations and discuss the change in movement magnitude and velocity vector difference in each direction before and after discontinuity correction. To do this, we used three years (2017-2019) of data from 40 GNSS stations. The average magnitude of the velocity vector in the north-south, east-west, and vertical directions before correction is -12.9±1.5, 28.0±1.9, and 4.2±7.6 mm/yr, respectively. After correction, the average moving speed in each direction was -13.0±1.0, 28.2±0.8, and 0.7±2.1 mm/yr, respectively. The average magnitudes of the horizontal GNSS velocity vectors before and after discontinuous correction was similar, but the deviation in movement size of stations decreased after correction. After equipment replacement, the change in the vertical movement occurred more than the horizontal movement variation. Moreover, the change in the magnitude of movement in each direction may also cause a change in the velocity vector, which may lead to errors in geophysical analysis.

Evaluation of Stability and Deterioration Characteristics for the Rock-carved Standing Buddha Triad in Gyeongju Seoak-dong, Korea (경주 서악동 마애여래삼존입상의 손상특성 및 안정성 평가)

  • Lee, Chan Hee;Choie, Myoungju
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.137-150
    • /
    • 2021
  • The rock-carved standing Buddha triad in Seoak-dong is a large stone Buddha statue of the Unified Silla era (AD 676 to 935) in ancient Korea, built near the top of the southeastern side of mountain Seondosan in Gyeongju, is characterized by its locational importance, the powerful Amitabha and the gentle sculptural technique of the Bodhisattva. In particular, Amitabha Buddha in andesite rock slope with biotite granite pedestal and two Bodhisattva parallel made by alkali granites seems to express the dignity through the color and texture of the stones. In the Amitabha Buddha, deterioration characteristics are accelerating due to the combination of various joint systems, instability of the slopes and relaxation by the root pressure of plants occurring at the top. In addition, physical properties have deteriorated owing to the increase of discontinuous surfaces as joints, cracks and scalings, and the coverage of algae and lichen is also high. Therefore, deterioration degree in Buddha triad is accelerated due to the physical weathering characteristics from natural rock mass and various biological invasion.

Microstructure of Cu-Ag Filamentary Nanocomposite Wires Annealed at Different Temperatures (어닐링한 Cu-Ag 나노복합재 와이어의 미세조직)

  • Kwak, Ho Yeon;Hong, Sun Ig;Lee, Kap Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.995-1000
    • /
    • 2011
  • The microstructure of Cu-24 wt.%Ag filamentary nanocomposite fabricated by a thermo-mechanical process has been investigated by transmission electron microscopy (TEM) observations. This study is focused on the stability of Ag filaments formed by cold drawing; the effects of thermal treatment on the precipitation behavior and distribution of Ag-rich precipitates were also investigated. The Ag filaments elongated along the <111> orientation were observed in Cu-rich ${\alpha}$ phase of the as-drawn specimen and the copper matrix and the silver filament have a cube on cube orientation relationship. Annealing at temperatures lower than $200^{\circ}C$ for the as-drawn specimen caused insignificant change of the fibrous morphology but squiggly interfaces or local breaking of the elongated Ag filaments were easily observed with annealing at $300^{\circ}C$. When samples were annealed at $400^{\circ}C$, discontinuous precipitation was observed in supersaturated Cu solid solution. Ag precipitates with a thickness of 7-20 nm were observed along the <112> direction and the orientation relationship between the copper matrix and the Ag precipitates maintained the same orientation relationship in the as-drawn specimen. The interface between the copper matrix and the Ag precipitates is parallel to {111} and micro-twins were observed in the Ag precipitates.

Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique (화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정)

  • Kim, Ryoungeun;Lee, Okjeong;Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

Effects of Reading Aloud on International Students' English Formulaic Sequences Learning (소리 내어 읽기가 유학생의 영어 정형화 배열 학습에 미치는 영향)

  • Lee, Ji-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.341-348
    • /
    • 2022
  • Formulaic sequences are continuous or discontinuous series of words that are seemingly treated like single units. Formulaic sequences play a key role in language development, and formulaic sequences acquisition determines the success or failure of language development. This study proposes a reading aloud activity as a way for international students to learn formulaic sequences. A class focused on reading aloud was conducted with 41 international students taking a general English course at a university in Seoul. For 15 weeks, video lectures and real-time Zoom classes were conducted in parallel. The animated film Frozen was used as course material. In the video lectures, the teacher interpreted the movie script in easy Korean and read aloud formulaic sequences. Students were tasked with reading the sentences with formulaic sequences aloud, recording themselves reading aloud, and submitting their recordings. During real-time class meetings, students performed the activity of reading aloud the formulaic sequences they had studied in the video lectures. There was a significant increase in the interpretation and sentence writing of formulaic sequences in participants' post-evaluation compared to the pre-evaluation. Through the study's survey, students exhibited positive views in the affective domains.

A Study on the Development of In-Socket Pressure Change Measurement Sensor for Estimation Locomotion Intention of Intelligent Prosthetic leg User (지능형 대퇴의족 사용자의 보행 의도 추정을 위한 소켓 내 압력 변화 측정 센서 개발에 관한 연구)

  • Park, Na-Yeon;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • The prosthetic leg is a device that performs walking instead of a amputated lower limb, and require a change in locomotion mode by providing the user's intention to respond to a discontinuous locomotion environment. Research has been conducted to detect the users' intentions through biomechanical features inside the socket that directly contacts the cut site in demand for natural locomotion mode changes without external control equipment. However, there is still a need for a sensor system that is suitable for the internal environment of the main body and socket of the cut site. Accordingly, this paper proposed a film-type sensor system that is suitable for the main body characteristics of the cut site, is not affected by the temperature and humidity conditions inside the socket, and is easy to manufacture in various sizes. The proposed sensor is manufactured base on Velostat film and takes into account the pressure measurement characteristics that vary with size. Through the experiment, the change in the internal pressure of the socket due to the intentional posture performance of the wearer was measured, and the possibility of detecting the intention to change the locomotion mode was confirmed.

Efficient Analysis of Discontinuous Elements Using a Modified Selective Enrichment Technique (수정된 선택적 확장 기법을 이용한 불연속 요소의 효율적 해석)

  • Lee, Semin;Kang, Taehun;Chung, Hayoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.267-275
    • /
    • 2022
  • Using a nonconforming mesh in enrichment methods results in several numerical issues induced by discontinuities and singularities found within the solution spaces, including the computational overhead during integration. In this study, we present a novel enrichment technique based on the selective expansion technique of moment fitting (Düster and Allix, 2020). In particular, two modifications are proposed to address the inefficiency during the integration process. First, a feedforward artificial neural network is introduced to correlate the implicit functions and integration moments. Through numerical examples, it is shown that the efficiency of the method is greatly improved when compared with existing expansion techniques, whereas the solution accuracy is maintained. Additionally, the finite element and domain representation grids are separated, which in turn improves the solution accuracy even for coarse mesh conditions.

Comparison of error rates of various stereo matching methods for mobile stereo vision systems (모바일 스테레오 비전 시스템을 위한 다양한 스테레오 정합 기법의 오차율 비교)

  • Joo-Young, Lee;Kwang-yeob, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.686-692
    • /
    • 2022
  • In this paper, the matching error rates of modified area-based, energy-based algorithms, and learning-based structures were compared for stereo image matching. Census transform (CT) based on region and life propagation (BP) algorithm based on energy were selected, respectively.Existing algorithms have been improved and implemented in an embedded processor environment so that they can be used for stereo image matching in mobile systems. Even in the case of the learning base to be compared, a neural network structure that utilizes small-scale parameters was adopted. To compare the error rates of the three matching methods, Middlebury's Tsukuba was selected as a test image and subdivided into non-occlusion, discontinuous, and disparity error rates for accurate comparison. As a result of the experiment, the error rate of modified CT matching improved by about 11% when compared with the existing algorithm. BP matching was about 87% better than conventional CT in the error rate. Compared to the learning base using neural networks, BP matching was about 31% superior.

Synthesis of Hyaluronic Acid Microsphere Crosslinked with Polyethylene Glycol Diglycidyl Ether Prepared by A Simple Fluidic Device

  • Yuk, Sujeong;Jeong, Dayeon;Lee, Yongjun;Lee, Deuk Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.251-258
    • /
    • 2021
  • Hyaluronic acid (HA) microspheres (MSs) crosslinked with polyethylene glycol diglycidyl ether (PEGDE) are prepared using a simple fluidic device (SFD) to investigate the optimized parameters. A solution mixture of PEGDE in 2-methyl-1-propanol was prepared as a continuous phase in SFD. HA solutions of 1 wt% concentration were introduced into SFD as a discontinuous phase. The HA solution prepared by stirring for more than 48 h exhibited spherical MSs at the needle tip inside the ring cap. As the flow rate of the continuous phase increased from 0.7 to 1.9 mL/min, the diameter of the MS decreased from 173±36 ㎛ to 129±13 ㎛. Although the PEGDE concentration in the range of 0.2 to 1.8 vol% did not affect the diameter of the MS, the microstructure of MS, consisting of inner hollow void and wall, was changed. The inner void and wall size decreased and increased from 79.5 ㎛ to 57.2 ㎛ and from 10.3 ㎛ to 21.4 ㎛, respectively, with increasing PEGDE concentration from 0.2 vol% to 1.8 vol%. FT-IR peaks located around 2867 cm-1 and 1088 cm-1 indicated that the HA MS prepared at different PEGDE concentrations were chemically crosslinked. The HA MSs containing different PEGDE concentrations exhibited quantitative cell viability of more than 98%. L-929 cells adhered well to the HA MSs and proliferated continuously with increasing culture time to 48 h regardless of PEGDE concentration, implying that the HA MSs are clinically safe and effective.